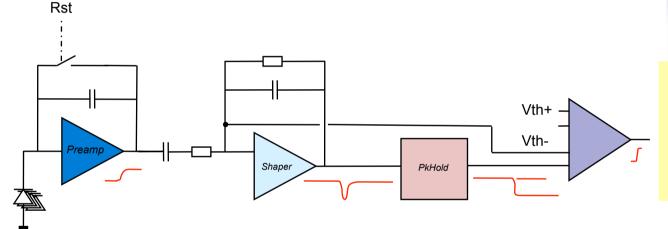


UK Activities on pixels.

(Previous report at Frascati, Dec 2009)

Adrian Bevan¹, Jamie Crooks², Andrew Lintern², Andy Nichols², Marcel Stanitzki², Renato Turchetta², Fergus Wilson².

> ¹Queen Mary, University of London ²STFC, Rutherford Appleton Laboratory


Overview

- Brief Reminder of the concept:
- Work since Frascati:
 - Discussions with Pisa (March)
 - Material Budget
 - Geometries: Long Barrel Lampshade
- To Do... (a long list):
 - Chip
 - Support
 - Physics studies

TPAC-style sensor for SuperB

- Deep p-well pixel design (derived from TPAC).
- On pixel preamp, shaper, peak hold.

The PeakHold keeps data until pixel can be readout/reset. ~12µW static power per pixel.

NMOS

TRANSISTOR

NWELL

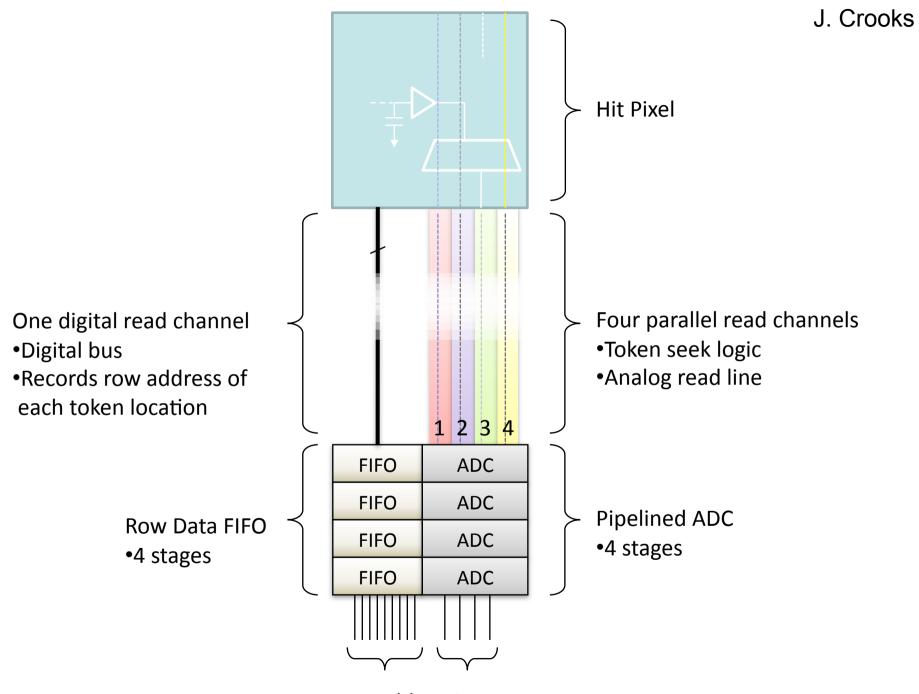
DIODE

SUB

CONN

INCIDENT

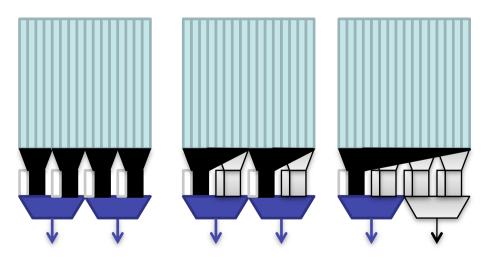
PMOS

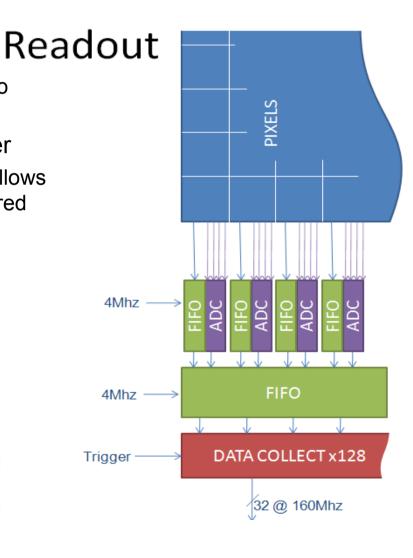

TRANSISTOR CONN

EPITAXIAL LAYER

NWELL DEEP PWELL

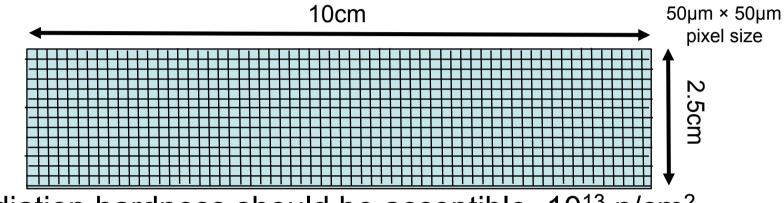
WELL


- Token seek readout logic.
- 5bit Ramp ADC per column of pixels to provide some dE/dx information (need to evaluate the impact from this).



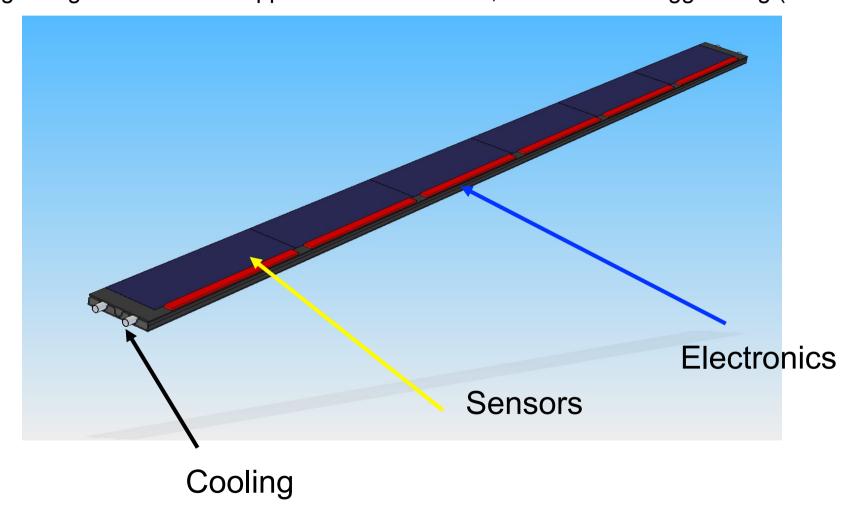
Row Addr Hit Data

- Data rates from Layer 0 are very high
 - Consider an on-chip FIFO with external veto /trigger to reduce data volume
- Data rates from outer layers are much lower
 - Consider a column multiplexer circuit that allows ADCs to be shared while others are powered down in outer layers
 - Could use the same ASIC design with less connections (bonds) for outer layers?



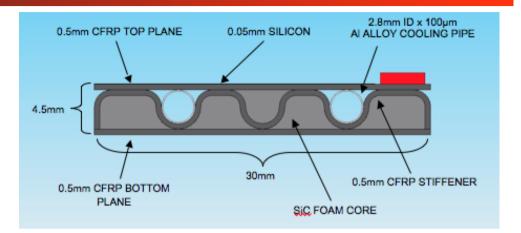
Sensor module for SuperB

- Alter layout of the chip: (4×2.5cm² chip stitched together)
 - 1 module = a 10cm × 2.5 cm × 50µm sensor.


Radiation hardness should be acceptible~10¹³ n/cm².

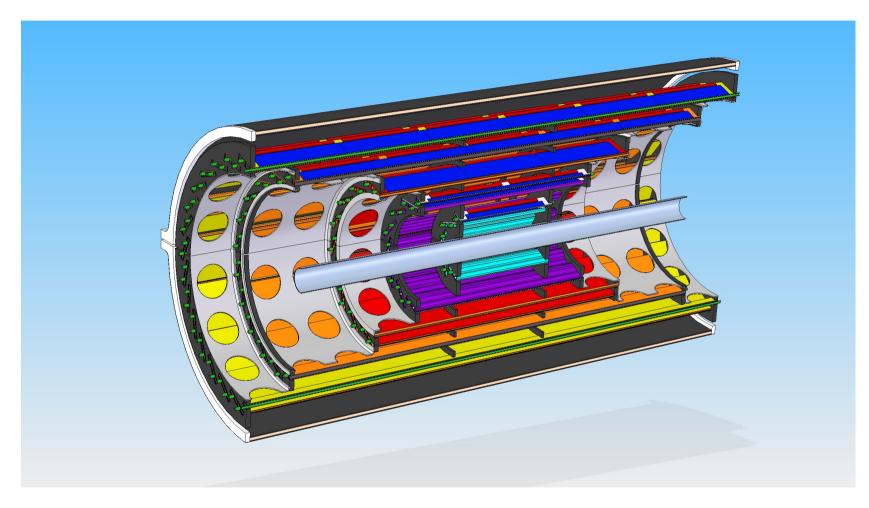
- 10 W power per module: < 5KW per 6 layer SVT.</p>
 - Requires active cooling.
 - Ramifications for:
 - Material Budget.
 - Utility hook-up (cooling/power/readout).
 Annecy March 09

Stave Drawings


Concept: use staves as a basic unit for assembly of the detector. Design a rigid stave to be supported from the ends, with minimal saggital sag (250um).

Material Budget: Some initial studies

- Made first go at Stave structure
- Sandwich
 - Silicon 50 microns
 - Carbon Fiber
 - Silicon Carbide Foam
 - Aluminum Cooling pipes
- Current Material budget
 - 1.1 % per stave
 - Dominated by carbon fiber
- Very conservative design
 - Will be reduced after more


Material	Radiation length, D ₀ (mm)	%X ₀
CFRP	240	0.730
Al Alloy	89	0.069
SIC FOAM	1000	0.181
Silicon	94	0.053
Coolant (Water)	360	0114
	TOTAL	1.146%

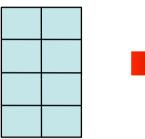
(Material thickness averaged over section of stave)

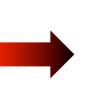
Mechanical Layout

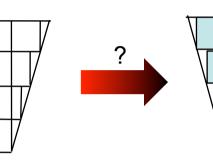
The Lamp-Shade geometry can be adapted from this design – need to try barrel vs LS optimization studies to quantify any gains.

Costs

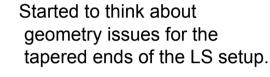
- Expect a yield of ~60%
 - This is based on previous experience with this foundry.
 - Expect sensor cost of \$0.5M / 330K€.


Total Surface		1	m^2	1
Sensor Size	x	100	mm	100
	x	25	mm	25
sensor/wafer		5		5
Total good sensors needed		400		400
yield		20%		60%
Total number of sensors needed		2,000		667
Total number of wafers		400		134
Cost/wafer		\$ 3,750		\$ 3,750
Wafer cost		$1.5M (1M\epsilon)$		$0.5M (0.33M\epsilon)$
Cost/cm^2		\$ 150		\$ 50
NRE (set-up-costs)		\$ 190,000		\$190,000

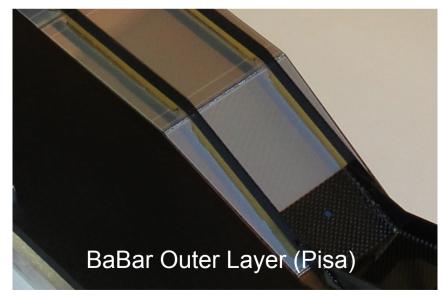



- Marcel Stanitzki, Fergus Wilson, AB recently visited Pisa.
 - Extremely useful meeting many ideas exchanged.
 - Concepts for lighter support structure.
 - Geometry of the detector, and how to realise this.
 - Visited the Pisa facilities to see the status of their R&D.
 - Detailed list of things to investigate between now and the end of the TDR period (see later).
 - Outlined a path for tighter collaboration between UK and Italian efforts.

- Work on the chip:
 - How can we make LS end modules?



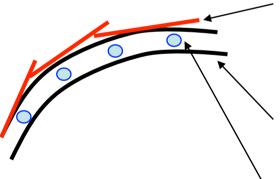
Easy to fabricate


Not so clear cut

Bus cable is a solvable issue

The CMOS structure – especially with stitching is a little more complicated...

- While it is easy to make trapezoidal sensors with strips; this is harder for INMAPS.
- Can make a variant on Rectangular geometries.


Easy

- Work on the Chip:
 - Radiation hardness.
 - Power consumption vs. hit rate.
 - Signal resolution as a fn of incident angle.
 - Usefulness of dE/dx measurement from 50um of silicon (Re: ADC).
 - Power distribution/signal bus over 30cm (utilities issue) & do we need coupling capacitors over this length.
 - Cooling over 30cm (utilities issue)

- Work on the mechanics: L0 off bellows, L1-N off cryostat
 - How much material in the bus.
 - What is the material budget for inner/outer layers (between 0.2 and 1.14%).
 - Half shell space-frame geometry with overlapping sensors to minimize material budget?

Retain pinwheel for the silicon sensors (50um thick).

Superstructure would support sensors at ends (struts in the middle as/if needed).

Cooling infrastructure would support the sensor along z (into page).

What would the material budget of this be vs. stave design?

- Work on physics studies:
 - Study low level information on particle tracking: d₀, ...
 - Low momentum tracking performance
 - Affect on $\theta_{\rm C}$ resolution in DIRC from material.
 - Study a number of modes to see how each design choice affects the potential output:
 - π⁺π⁻, π⁰π⁰, D*X (soft pions), D-mixing (at 4S and threshold), τν &/ Kvv [aim to define Barrel and LS geometries in Fast Sim to check signal performance]
 - Study the material budget as a function of θ, etc. ... using particle gun modes of FastSim and Bruno.
 - Physics benefit of r=1.3 vs. r=1cm.

Summary

- Already had some good ideas to go away and think about as possible variant concepts on the support.
 - A natural to tie in with work from Filippo Bosi.
- Now need to knuckle down and do some more work...
- Aim to define a long barrel and lampshade design for signal studies in the simulation programmes as soon as we define the amount of bus material.
 - As we understand the mechanics of the space-frame geometry, will put a geometry together on that as well.
- A lot of work to do!