SuperB: DCH occupancy using FullSim

Dana Lindemann McGill University

SuperB General Meeting March 16, 2010

Outline

- Analysis/Tracking Procedures
- Effect of Shielding
- Low Energy Hits
- Raw Occupany
- Presence of Neutrons
- Occupany vs. Geometry
- SuperB Production & Low-Angle Bhabhas

Analysis Procedure

- Use Bhwide generator in FastSim (There is no Bhwide generator for Bruno)
- Transfer events to FullSim by converting StdHepAsciiDump output to Bruno input
- Use guinea generator in Bruno
- For speed, removed EMC, DIRC, and IFR from gdml
- Compared shielded and unshielded final-focus
- Create 2000 event tuples with e+e- at 2-178, 5-175, 10-170, and 15-165 degrees in the CM frame.
- Use ROOT to estimate occupancy. Events normalized to $\mathscr{L} = 10^{36}$ cm²/s.

Tracking Algorithm

- Bruno only provides deposited energy (hit) information within a chamber that's void of wires.
- Using the TrackID of time-ordered hits, I define a track and extrapolate the number of wires the track would cross.
 - All wires are assumed to be axial and uniformly spaced.
- Tracks starting near inner radius are drawn with 2 straight lines: from first hit to hit with max radius, then to final hit and beyond.
- Tracks starting within DCH (ie. 96% have E < 1.5 MeV) are drawn with one straight line: from first hit to final hit.
- 30events, 5degflat, Unshielded0 adius (cm) 80 70 e- < 15 MeV protons 60 50 40 30 -100-5050 100 150 0 z-axis (cm), along beam pipe
 - Multiple straight lines used for bouncing protons.

Shielded Acceptance

Unshielded Acceptance

radius (cm)

Occupancy: Shielded vs. Unshielded

Occupancy vs. Energy: Unshielded

Occupancy vs. Energy: Unshielded WC Occupancy vs. Energy for flat

15 25 30 20 Wire number, increasing with radius

20

for comparison

15

<E<

1 eFe

0.015 <E<

0 001 -E-0006 -E- 0.00

30

7.5 (2deg File

35

25

Wire number, increasing with radius

Dana Lindemann - McGill

35

40

Raw Occupany

- Instead of forming tracks, I calculate the raw occupany on each wire by summing the deposited energy of all hits that lie closest to that wire.
- From the low amount of deposited energy from high energy tracks, I conclude that many low energy hits are actually spin-offs from high energy tracks.
- "Duplicates" refer to single e- hits with the exact position (to μm³) as another hit from an actual track. These hits ALL have incident energy <0.6 MeV.

Presence of Neutrons

This is the number of neutron crossings/event; each may cross several times.
There is no correlation between the amount of low energy hits or deposited energy and the number of neutrons in any ONE given event.

Presence of non e+e- tracks

Unshielded

Shielded

• The ratios of the angles here for are similar to the ratios of angle for <1.5 MeV hits, though there is not other evidence of correlation.

Feb 16, 2010

Dana Lindemann - McGill

Geometries: Shielded vs. Unshielded

Geometries: WC vs. Shielded

More Geometries

Unshielded, E>15MeV, Spherical EndPlate sph:10 mm aluminum EP thinEP: 5 mm thickEP: 20 mm copperEP: 10 mm copper EP

Unshielded, E>15MeV, Flat EndPlate flat: Forward EP 175 cm from vertex short: Forward EP 160 cm from vertex long: Forward EP 190 cm from vertex

SuperB nTuple production - Bbbrem

Bbbrem and Bhlumi

Conclusions

- The shield provides an effective reduction for low angle BhaBhas. Therefore, a WC chamber is not as necessary with a shield.
- The shield seems to be the cause of the low energy hits from unknown origin, contributing to an almost uniform increase in occupany, as well as the presence of neutrons.
- Bhwide, SuperB production tuples, and preliminary Bhlumi studies all agree that lowangle bhabhas produce the highest occupancies

Backup Slides

2. 18 Mar 1.

1 34

Using outgoing e+e- BhaBhas only

SuperB FULL production sample

Unshielded

Occupany vs. Angle

