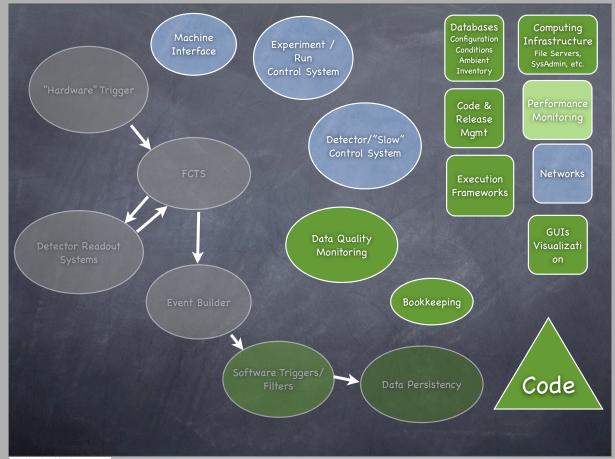

SuperB Online Overview & Progress

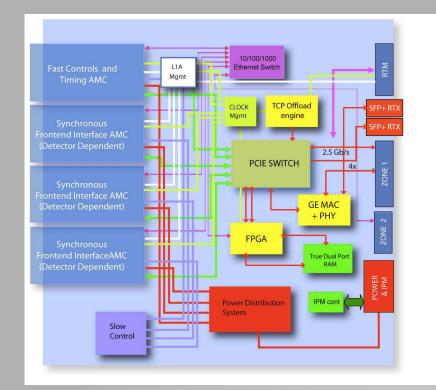
Steffen Luitz, Dominique Breton, Umberto Marconi Annecy Meeting, 16.3.2010


ROMs

- Network Event Builder
- HLT Farm and Logging
- Run Control
- Detector Controls / Slow Controls
- Other Systems

System Overview

Wednesday, March 10, 2010


Online System Components

Baseline assumptions:

- 150kHz L1-accept rate, 75kByte Event size
- HLT (BaBar L3-equivalent) accepts 25nb →25kHz logging rate at 1x10³⁶

 - \rightarrow ca. 12 Gbyte/s input rate
 - \rightarrow Assume x2 "safety" (can't run at 100%) \rightarrow 24GByte/s
 - \rightarrow ca. 2 Gbyte/s output/logging rate
- Extrapolated from BaBar
 - Currently best estimate
 - Event size may increase (e.g. SVT Layer 0)
 - Need to design size capability (and/or safety factor)
 - After-FEX event size estimate needed soon from Sub-Detectors
 - L1 accept rate may increase (design for lumi upgrades) • Not an issue for Online now (if designed to be scalable)

Rates and Sizes

ROMs

Process and forward FCTS information to FEE, implement FEE-specific requirements
Receive data from the subdetectors over optical links
Reconstitute linked/pointer events
Process data (FEX, data reduction)
Send event fragments into HTL farm (network)

Would like to use off-the shelf hardware as much as possible (i.e. off-the shelf computers with OL PCIe cards?) → R&D
Will need to determine processing requirements from sub-detectors.

Combines event fragments from ROMs into complete events in the HLT farm

- In principle a solved problem
- We would like the fragment routing determined by FCTS
 - FCTM decides to which HLT node all fragments of a given events are sent (enforces global synchronization)
 - Choice of network technology
 - Combination of10Gbit/s and 1GBit/s Ethernet prime candidate
 - UDP vs. TCP ... a long contentious issue?
 - Pros and cons to both
 - Can we use DCB/DCE end-to-end flow control in switches?
 - Design choices for protocol and network / node congestion control
 - Can we re-use some other experiment's event builder?
 - Interaction with protocol choices

Network Event Builder

- Standard off-the shelf rack-mount servers
- Network event builder receivers
 - Receive event fragments from ROMs, build complete events
- HLT trigger (L3)
 - 10ms/event (baseline assumption, almost 10x BaBar) → 1500 cores needed (~150 servers)
- Data logging & buffering
 - Local disk (few TB/node)?
 - Storage servers over back-end network?
 - Probably 2 day's worth of local storage (2TByte/node)? Depends on SLD/SLA for data archive facility.
 - No file aggregation into "runs" \rightarrow bookkeeping
 - Back-end network to archive facility

HLT Farm & Logging

System-wide collection of information

- Histograms, scalers, etc.
- L1, HLT
- small farm that reconstructs sub-samples of events and performs specialized tasks like beam-spot monitoring
- Automatic monitoring + operator GUIs
- Distributed histogram collection problem
- No specific thoughts have gone into this yet, but will most likely NOT re-use BaBar infrastructure (e.g. DHP)

Data Quality Monitoring

Run Control

- Coherent management of the ETD and Online systems
 - User interface, managing system-wide configuration, reporting, error handling, start and stop data taking

Detector Control / Slow Control

- Monitor and control detector and detector environment
- No specific thoughts have gone into designing these systems, but we assume that we can use/re-use LHC experiment and commercial technology

Run Control / Detector Controls

Electronic Logbook

- Web based integrated with bookkeeping
- Databases
 - Configuration, Conditions, Ambient
- Configuration Management
 - Authoritative source of configuration
 - Log trail of configuration
- Software Release Management
- ETBD (eventually to be designed)

Auxiliary & Support Systems (some experiment-wide)

- For this meeting focus on ETD issues
- For now most Online design issues are on "computing timescales"
- Online next steps:
 - Define roadmap and timetable for Online
 - FEX / Data reduction in ROMs
 - Work with sub-detectors to
 - Identify processing requirements for FEX/data reduction
 - Determine output data size (needed for network design and initial farm scaling) some flexibility there but would be good to settle event size for all downstream system design and sizing
 - Map processing requirements on processing units
 - CPU (preferred), FPGA, GPU???
 - Online Software & Infrastructure
 - Look at what others are doing. Pros and cons of certain approaches.
 - Investigate potential use of existing tools (such as CMS xDAQ)
 - More research on Online/Offline code sharing reqs
 - Code, build infrastructure, frameworks databases, etc.
 - ROM R&D (what's the best way to build a ROM?)

Online Next Steps