

Super-B: Be pipe heating.

Sasha Novokhatskí SLAC National Accelerator Laboratory

XII Super B Workshop March 16-19, 2010 LAPP, Annecy, France

Super-B parameters. March 3, 2010

4.18

4.29

2447

4.76E+08

6.56E+10

2.502

0.865

4.05E-04

6.68E-04

7.34E-04

0.01

0.0118

2.12

5.25

2.8

Low Emittance

6.7

4.73

1460

4.76E+08

3.92E+10

4.36E-04

6.31E-04

6.43E-04

1.493

2.11

5.00E-04

0.01

2.97

3.08

9.43

12.72

12

6

6.88

10

0.0125

1258.4

5

2

2

2.38E+05

1998

978

LER (e-)

4.18

4.34

1888

4.76E+08

5.06E+10

1.930

0.865

4.05E-04

6.68E-04

7.34E-04

0.01

2.77

0.0116

1.63

5.13

HER (e+)

Base Line

1258.4

6.7

4.69

1892

4.76E+08

5.08E+10

4.36E-04

6.31E-04

6.43E-04

1.935

2.11

5.00E-04

0.01

3.01

3.99

12.22

17.08

12

6

7.01

10

0.0126

5

2

2

2.38E+05

1998

978

LER (e-)

HER (e+)

Units

GeV

m mm

mm

mA

%

Hz

Hz

#

#

#

mA

MeV

dE/E

dE/E

dE/E

kHz

MW

MW

MW

MV

MΩ

1.61

4.36

1766

4.76E+08

2.37E+10

0.903

0.166

4.05E-04

6.68E-04

7.34E-04

0.01

2.77

0.0116

0.29

1.94

চ

2.58

4.75

1365

4.76E+08

1.83E+10

4.36E-04

6.31E-04

6.94E-04

0.698

0.4

5.26E-04

0.01

2.96

0.0124

0.55

1.68

3.11

6

3

5

2.54

5

1

2.38E+05

1998

1956

HER (e+)

Tau/Charm (prelim.)

1258.4

LER (e-)

	(Bold: computed values)
	Parameter
	Energy
	Circumference
	Bunch length (zero current)
<u>م</u>	Bunch length (full current)
Bu	Beam current
ti	N. Buckets distance
	lon gap
Le 1	RF frequency
	Revolution frequency
$ $ ∂	Harmonic number
	Number of bunches
$ \mathcal{F} $	N. Particle/bunch
\sim	Bunch current
	Energy Loss/turn
	Momentum compaction
	Energy spread (zero current)
1 ts	Energy spread (full current)
ia	CM energy spread
J J	Energy acceptance
0	Synchrotron frequency
2	Synchrotron tune
	SR power loss
5	RF Wall Plug Power (SR only)
a	Total RF Wall Plug Power
y.	Number of cavities
12	Number of Klystrons
S.	Total Number of klystrons
-	RF Voltage

 \mathbb{T}

0	
-	
_	

High Current

6.7

1258.4

4.03

4.4

1

2

2.38E+05

1998

1956

3094

4.76E+08

4.15E+10

4.36E-04

6.31E-04

6.43E-04

5.00E-04

0.01

3.54

0.0148

6.53

19.98

30.48

20

10

16

9.3

1.582

2.11

LER (e-)

4.18

3.65

4.4

4000

4.76E+08

5.36E+10

2.045

0.865

4.05E-04

6.68E-04

7.34E-04

0.01

3.26

0.0137

3.46

7.2

HER (e+)

Beryllium pipe

- The longitudinal resistive—wall wake fields have been investigated in the IR Be chamber for two cases:
 - Case 1
- Radius to inner surface 10 mm conductivity 10^6
 ohm-1 m-1
- 1st layer Au 4 um 48.8
- 2nd layer Be 0.5mm 25
- •
- Case 2
- Radius to inner surface 10 mm
- 1st layer Au
 2nd layer Be
 3rd layer Ni
 7 um
 14.6

Sasha Novokhatski "Be Pipe Heating"

4

 \mathbb{C}

XII SuperB Project Workshop

6

 \mathbb{T}

Loss factor and power

Ρ

 \mathbb{T}

Single bunch transverse field

F

12/03/2009

XII SuperB Project Workshop ratoire d'Annecy-le-Vieux de Physique des Particules LAPP - France

$$\frac{\partial E}{\partial t} \approx \frac{c}{Z_0 \sigma} \frac{\partial^2 E}{\partial x^2}$$

Solution for initial conditions $E = \delta(x)$

$$E = \sqrt{\left(\frac{Z_0\sigma}{4\pi ct}\right)} \exp\left(-\frac{Z_0\sigma}{4ct}x^2\right)$$

diffusion "time"

$$\frac{Z_0\sigma}{4ct_d}d^2 \sim 1 \quad t_d \sim \frac{Z_0\sigma}{4c}d^2$$

 $t_d = \frac{120\pi \cdot 25 \cdot 10^6}{4 \cdot 3 \cdot 10^8} \left(5 \cdot 10^{-4}\right)^2 = \pi \cdot 10^{-1} \cdot 25 \cdot 25 \cdot 10^{-8} = 1963 \cdot 10^{-9} \approx 2\mu s$

XII SuperB Project Workshop Laboratoire d'Annecy-le-Vieux de Physique des Particules

Sasha Novokhatski "Be Pipe Heating"

D

Multi-bunch transverse field

F

03/18/2010

XII SuperB Project Workshop Laboratoire d'Annecy-le-Vieux de Physique des Particules

T

10 03/18/2010

XII SuperB Project Workshop Laboratoire d'Annecy-le-Vieux de Physique des Particules

larch 16th to 19th 2010