

× Likelihood ratio method for K/π separation. Calibration

 Jime separation. Effects contibuting to the time resolution smearing (Leonid presentation)

* Simple and illustrative analysis

More refined analysis and preliminary results

$\begin{aligned} & \underbrace{\text{ikelihood method. Calibration}}_{Likelihood = \prod e^{(-\chi_i^2)}} & \chi^2 = (\frac{time.measured - expected}{RMS})^2 \end{aligned}$

i corresponds to the PMI channel and this is to describe all photons collected in one PMI

Example for kaons: We generate kaons and gather following data to the calibration table

Ch_id	Т	RMS	Р	Theta	m
0	7.995nsec	0.0799792nsec	4000 Mev/c	20 deg	494 MeV
1	7.99026nsec	0.0429357nsec	4000 Mev/c	20 deg	494 MeV
2	7.98498nsec	0.0376411nsec	4000 Mev/c	20 deg	494 MeV
3	7.98164nsec	0.040736nsec	4000 Mev/c	20 deg	494 MeV
4	7.97613nsec	0.0424979nsec	4000 Mev/c	20 deg	494 MeV
5	7.97503nsec	0.04022nsec	4000 Mev/c	20 deg	494 MeV
6	7.97526nsec	0.0441045nsec	4000 Mev/c	20 deg	494 MeV

Ch_id is the 9D of PMJ

For a pion we follow the same calibration procedure

Time separation.

 $\chi^2 = \left(\frac{time - expected}{RMS}\right)^2$

time is the time between bunch crossing and single photon registration in the photomultiplier

4

Effects that contribute to the RMS

TTS
T₀
Electronics
Quantum efficiency
Protective foil

Símple model, demonstration of the methodL

First steps using likelihood method

- \bullet All the effects are taken into account smearing time distributions by Gaussian with width $\pmb{\sigma}$
- The quantum efficiency is taken into account by accepting one photon every 10th photon produced by one particle

 $\theta = 20^{\circ}$

5

Φ=0°

We generated at the same Phi and theta angles

 $Likelihood.ratio = \frac{likelihood(K)}{likelihood(K) + likelihood(\pi)}$

Likelihood ratio — 1 —> K

Likelihood ratio $\rightarrow 0 \rightarrow \pi$

Time distribution for 4 GeV/c (𝔅,π) Without smearing

7.8

7.6

7.7

7.9

8

8.1

8.2

8.3

8.4

8.5

6

At the time t = 0 the particle is emitted the interaction point

<u>Likelihood ratio, 4GeV/c</u>

 $Likelihood.ratio = \frac{likelihood(K)}{likelihood(K) + likelihood(\pi)}$

N_{pe}~7.9

Effeciency as a function of cut on the Likelihood ratio (4GeV/c)

We generate only pions and kaons and now we consider pions as a background for kaon identification

Time distribution for 3 GeV/c (K, π)

<u>Líkelíhood ratío, 3GeV/c</u>

Now we also consider pions as a background for kaon identification

Torwars a more complete analysis

Now we scan 1000 points in a 3-dimensional parameter space: • $\mathcal{P} = [0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4]$ GeV/c • $\theta = [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]$ degrees • $\varphi = [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]$ degrees

- → Quantum effeciency os GaAsp was simulated
- \rightarrow Every channel has $\sigma_{electronics} = 10$ psec
- \rightarrow Every photoelectron has $\sigma_{JJS} = 35$ psec

If there were two indissociable e⁻ in one channel we took an average time between them

 \rightarrow T_o was generated the same for every track

Likelihood for K and T vs momentum

Colors correspondance: 700 MeV/c, 900 MeV/c, 1500 MeV/c, 2500 MeV/c, 3500 MeV/c

Comparing fTOF performances with dE/dx

loose cut

The cut on likelihood: likelihood > 0.1

Comparing fTOF performances with dE/dx tough cut Kaon tight for pion, BaBar Kaon tight for kaon, Babar 0.06 0.6 0.04 0.02 0.4 0.2 -0.02 p [GeV/c] p [GeV/c] eff K/Pi Efficiency 8.0 Kaon 20.05 <theta< 25.78 25.78 <theta< 40 -40 <theta< 60 -0.6 **fTOF** 60 <theta< 75 -0.4 75 <theta< 95 -0.2 Pion 95 <theta< 146.1 -

Interstant Interstant

 Very good K/pion separation can be reached with TOF device improving very significatly the PID from Babar.

Caveat (work in progress)
 The results shown do not include

- sigma track and sigma detector coupling to the bar

- backgrounds and delta electrons