

✗ Likelihood ratio method for K/π separation. Calibration

✗ Time separation. Effects contibuting to the time resolution smearing (Leonid presentation)

✗ Simple and illustrative analysis

✗ More refined analysis and preliminary results

 $Likelihood = \prod e^{(-X_i^2)}$ $\chi^2 =$ *time.measured*−*expected RMS* $\big)$ 2 Likelihood metod. Calibraton

> *i* corresponds to the PMT channel and this is to describe all photons collected in one PMT

Example for kaons: We generate kaons and gather following data to the calibration table

...

Ch id is the $9D$ of PMJ

3 For a pion we follow the same calibration procedure

Time separaton.

 $\chi^2 =$ *time*−*expected RMS* $\big)$

time is the time between bunch crossing and single photon registration in the photomultiplier

 Δ

Effects that contribute to the RMS

 $>$ TTS \triangleright T 0 ➢ Electronics ➢ Quantum efficiency \triangleright Protective foil

Simple model, demonstration of the method.

First steps using likelihood method

- All the effects are taken into account smearing time distributions by Gaussian with width σ
- The quantum efficiency is taken into account by accepting one photon every 10^{th} photon produced by one particle

We generated at the same Phi and theta angles

Likelihood.ratio= *likelihood K* $likelihood\left(K\right) + likelihood\left(\boldsymbol{\pi}\right)$

Likelihood ratio - 1 - X

Likelihood ratio $\rightarrow 0 \rightarrow \pi$

 $Φ=0°$ $θ = 20°$

Time distibuton for 4 GeV/c (K,π) Without smearing **With Smearing**

6

At the time $t = 0$ the particle is emitted the interaction point

Likelihood rato, 4GeV/c

Likelihood.ratio= $likelihood(K)$ $likelihood\left(K\right) + likelihood\left(\boldsymbol{\pi}\right)$

Effeciency as a function of cut on the Likelihood rato (4GeV/c)

We generate only pions and kaons and now we consider pions as a background for kaon identification

Time distibuton for 3 GeV/c (K,π)

Likelihood rato, 3GeV/c

Now we also consider pions as a background for kaon identification

Torwars a more complete analysis

Now we scan 1000 points in a 3-dimensional parameter space: • $P = [0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4]$ SeV/c \bullet θ = [16, 17, 18, 19, 20, 21, 22, 23, 24, 25] degrees \bullet φ = [0, 3, 6, 9, 12, 15, 18, 21, 24, 27] degrees

➔ Quantum effeciency os GaAsp was simulated

 \rightarrow Every channel has σ electronics σ = 10 psec

 \rightarrow Every photoelectron has σ $_{\rm JJS}$ = 35 psec

If there were two indissociable e - in one channel we took an average time between them

➔ T $\frac{1}{\ell_0}$ was generated the same for every track

Likelihood for K and π vs momentum

Colors correspondance: **700 MeV/c**, **900 MeV/c**, **1500 MeV/c**, **2500 MeV/c**, **3500 MeV/c**

Comparing fTOF performances with dE/dx

The cut on likelihood: likelihood > 0.1

Comparing fTOF performances with dE/dx

The cut on likelihood: likelihood > 0.6

• Very good K/pion separation can be reached with TOF device improving very significatly the PID from Babar.

• Caveat (work in progress) The results shown do not include

> - sigma track and sigma detector coupling to the bar

- backgrounds and delta electrons