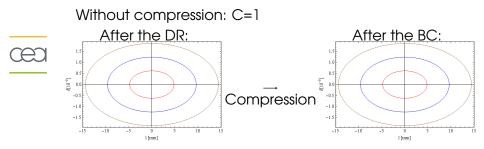

Bunch compressor and transfer lines

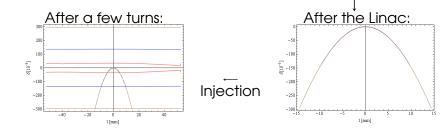
Antoine CHANCÉ

CEA Saclay IRFU/SACM

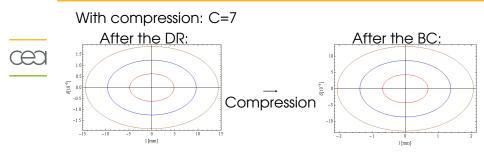
18th March 2010

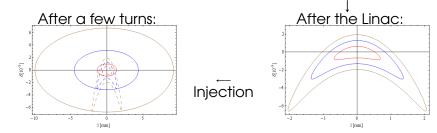
The injection scheme

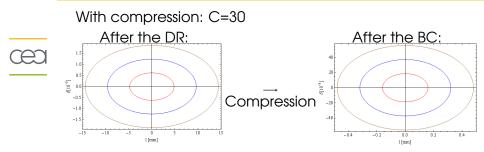

- The e⁺ are produced at low energy before the damping ring (DR).
- The e^+ and e^- are injected in the same DR at 1 GeV and damped.
- They are ejected and transported until a bunch compressor (BC).
- They are accelerated in a second linac up to their nominal energy.

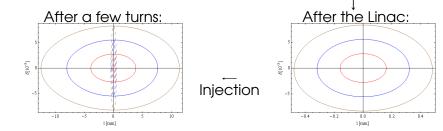

Parameter table

œ


	Units		electrons	positrons				
After the damping ring								
Total Energy	GeV	Ed	1	1				
rms bunch length	mm	Ĩd	4.8	4.8				
rms phase extension	rad	$\tilde{\theta}_d$	0.287	0.287				
rms energy spread	10 ⁻⁴	δ _d	6.2	6.2				
After the linac								
Total Energy	GeV	E _l	4.18	6.7				
Total voltage	GV	V_l	3.18	5.7				
RF frequency	GHz	f _l	2.856	2.856				
LER/HER								
Total Energy	GeV	ES	4.18	6.7				
Slipping factor	10-4	η	4.86	4.33				
RF voltage	MV	V _{RF}	4.0	5.7				
Synchronous phase	rad	θ_S	0.156	0.372				
RF frequency	MHz	f _{RF}	476	476				
Harmonic number	-	h	2015	2015				
Synchrotron period	ms	-	0.35 0.40					
Longitudinal damping time	ms	-	13.4 28					


Why a bunch compressor




Why a bunch compressor

Why a bunch compressor

Compromise to find:

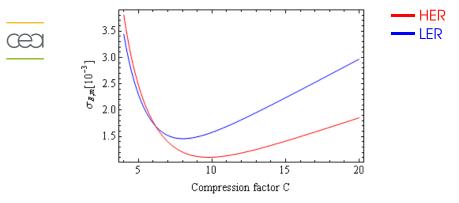
- Too small compression factor: the phase extension of the beam is too large at the injection in the linac.
 "Sausage-like beam"
- Too large compression factor: the energy spread of the beam is large and we keep the large energy spread after the acceleration.

The dynamic aperture shrinks significantly with energy in the HER and LER.

The criteria is to minimize the rms energy maximum of the beam after a few turns in the main rings.

Choice of the compression factor (2)

rms energy maximum after a few turns in the main rings:

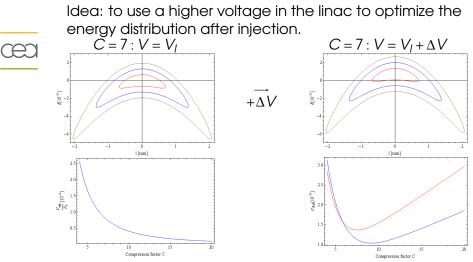

- 0

- 0

$$\sigma_{E,m}^{2} = \frac{C^{2}E_{d}^{2}}{E^{2}}\widetilde{\delta}_{d}^{2} + \alpha \cos\theta_{S} \left(1 - e^{-\frac{\beta^{2}\widetilde{\theta}_{d}^{2}}{2C^{2}}}\right) + \frac{3 + e^{-\frac{2\widetilde{\theta}_{d}^{2}}{C^{2}}} - 4e^{-\frac{\widetilde{\theta}_{d}^{2}}{2C^{2}}}}{2E^{2}}$$
$$\alpha = \frac{V\beta^{2}}{\pi h\eta E} \quad \beta = \frac{f}{f_{l}}$$
$$\widetilde{\delta}_{d}^{2} = \left\langle\delta^{2}\right\rangle_{d} \quad \widetilde{\theta}_{d}^{2} = \left\langle\theta^{2}\right\rangle_{d}$$

I for the values in the linac, d for the values in the DR. It is the rms energy maximum and not the energy spread.

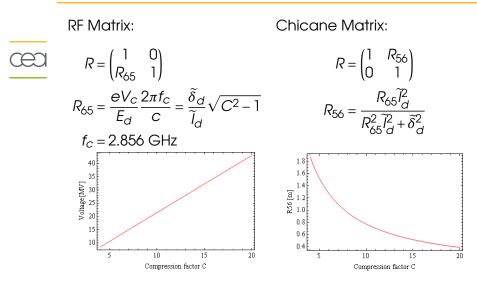
Choice of the compression factor (3)



The best point for the LER (HER) is C = 8.0 (9.8) and then $\sigma_{E,m} = 1.5\%$ (1.1%).

A good range for C is then (8,9).

 \Rightarrow Choice of C = 9 for the bunch compressor.

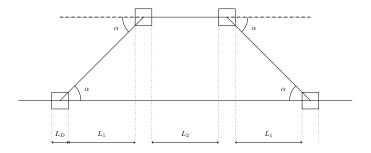

An idea to decrease the energy spread

The best point for the LER (HER) is then C = 7.5 (9.1) and then $\sigma_{E,m} = 1.4\%$ (1.0%).

 \Rightarrow A decrease by 10 % has been obtained.

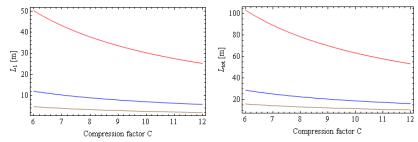
Parameters for the Bunch compressor

For C=9, V=19.3 MV and $R_{56} = 0.855$ m.

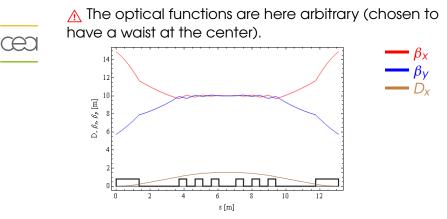

Design of the bunch compressor

Choice of a C-chicane: Its big advantage is to be achromatic.

Use of PEP II magnets: $B_{\text{max}} = 0.93T$ and L = 0.45 m.


 \rightarrow Margin on the field: *B*=0.83 T.

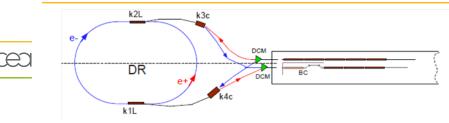
First dipole and last dipole of the chicane used to separate electron and positron beams.



Choice of the number of dipoles

For the chicane, we can choose 1, 2, ... dipoles for each group in the C-chicane.

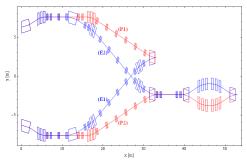
1 dipole
2 dipoles
3 dipoles
The best is to use 3 dipoles in each group.
Length of the separator: 1.35 m for a field of 0.83 T.



The optical functions are quite low.

 \Rightarrow No need to insert quadrupoles to keep the betaton functions low.

Total length of the chicane: 13.1 m.


The transfer lines

Four transfer lines.

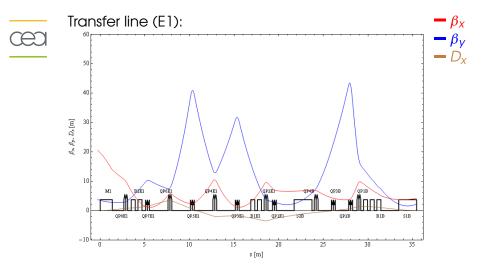
- The e^+ and e^- are injected in the same DR at 1 GeV.
- Two beam separators to separate the e⁺ and e⁻ beams.
- Two kickers (k2L and k1L) for the injection into the DR.
- Two kickers (k3c and k4c) to differentiate the e⁺ path from the one of the e⁻.
- The BC is after the DR and before the second linac.

Geometrical constraints

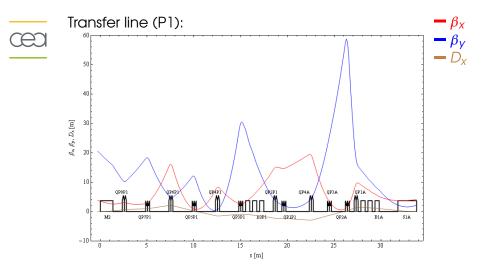
Same angle for the injection (extraction) septum: $3\pi/28$ rad.

 \Rightarrow a 0.56-T 2-m-long septum.

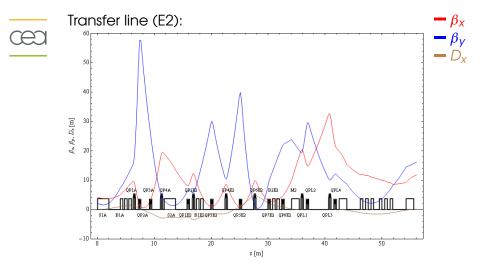
DR width: 12.59 m

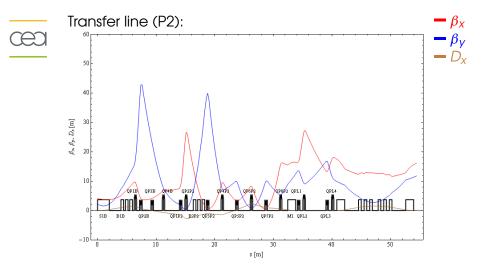

Distance between both linacs: $\approx 5 \text{ m}$ (4.76 m in the actual layout)

Optical constraints


- The transfer lines must be achromatic.
- Use as much as possible the PEP II magnets.
- In the linacs, a defocusing quadrupole for the e⁺ is focusing for the e⁻. The constraint on the optical functions at the entry or end of the transfer lines is then:

$$\begin{split} \beta_{x,i}^{(E1)} &= \beta_{y,i}^{(P1)} \quad \beta_{y,i}^{(E1)} = \beta_{x,i}^{(P1)} \quad \alpha_{x,i}^{(E1)} = \alpha_{y,i}^{(P1)} \quad \alpha_{y,i}^{(E1)} = \alpha_{x,i}^{(P1)} \\ \beta_{x,f}^{(E1)} &= \beta_{y,i}^{(P2)} \quad \beta_{y,f}^{(E1)} = \beta_{x,i}^{(P2)} \quad \alpha_{x,f}^{(E1)} = -\alpha_{y,i}^{(P2)} \quad \alpha_{y,f}^{(E1)} = -\alpha_{x,i}^{(P2)} \\ \beta_{x,f}^{(P1)} &= \beta_{y,i}^{(E2)} \quad \beta_{y,f}^{(P1)} = \beta_{x,i}^{(E2)} \quad \alpha_{x,f}^{(P1)} = -\alpha_{y,i}^{(E2)} \quad \alpha_{y,f}^{(P1)} = -\alpha_{x,i}^{(E2)} \\ \beta_{x,f}^{(E2)} &= \beta_{y,f}^{(P2)} \quad \beta_{y,f}^{(E2)} = \beta_{x,f}^{(P2)} \quad \alpha_{x,f}^{(E2)} = \alpha_{y,f}^{(P2)} \quad \alpha_{y,f}^{(E2)} = \alpha_{x,f}^{(P2)} \end{split}$$


Lattice of the TL (E1)


Lattice of the TL (P1)

Lattice of the TL (E2)

Lattice of the TL (P2)

Resume for the four TL

œ

	Units	(E1)	(E2)	(P1)	(P2)
Total length	m	35.749	56.077	34.108	54.436
Max Dipole field	Т	0.832	0.832	0.832	0.832
Max QP gradient	T/m	4.756	6.607	6.607	7.124
Max β_X	m	20.612	32.594	19.513	27.158
Min β_X	m	1.072	0.533	0.533	0.625
Max β_y	m	43.496	57.655	58.787	42.809
Min β_{y}	m	1.5603	0.418	0.389	0.460
Max D _x	m	3.450	4.940	2.073	2.290
Min D_X	m	-3.559	-3.469	-2.927	-2.793
€χ	nm	23	23	23	23
Momentum spread	‰	0.62	0.62	0.62	0.62
Max σ_X	mm	2.22	3.07	1.85	1.787

 \wedge For the moment, the momentum spread and the emittances before the DR are unknown: the beam size may be much larger for a bigger momentum spread.

Conclusion

- A compression factor of about 8-9 seems to be a good compromise.
- It is possible to make a BC with PEP II dipoles. The length of the chicane is about 13.1 m for a voltage of 19.3 MV.
- A first design of the transfer lines between the DR and the linac has been done. The maximum gradient in quadrupoles is 7.2 T/m. The PEP II dipoles and quadrupoles can be used. The betatron functions stay quite low (maximum \approx 60 m minimum \approx 0.4 m).
- The dispersion in the TL may be a problem.
- The design of the transfer lines between the linac and the main rings has not been done yet (TO DO).

Thank you for your attention!