Impact of Fwd-PID and Bwd-EMC using Semi-Leptonic Breco

Alejandro Pérez, A. Stocchi, N. Arnaud, L. Burmistrov LAL – Université Paris XI G. Dolinska Taras Shevchenko National Univerity of Kyiv

Outline

Reminder

- → Semi-Leptonic technique
- → $B^+ \rightarrow K^+ v v$ analysis strategy
- Detector Geometries
 - → Fwd region: TOF or extended DCH
 - → Bwd-EMC
- MC samples \Rightarrow February 2010 production
- Machine Backgrounds issue (Bhabha and radiative Bhabhas)
- Some preliminary results
 - → Fwd PID \Rightarrow Time Of Flight (TOF)
 - Bwd EMC \Rightarrow Veto device
- Summary and outlook

Reminder: SL technique

- Sample of 14 decay modes (charged + neutrals)
- Kinematics is unconstrained due to neutrinos
- Relatively high reconstruction efficiency ~2%

Reminder: B⁺→K⁺vv Analysis

- **Btag candidate:** K^+ (π^+) from D reconstruction is LHKaonTight (is not LHKaonNotAPion)
- Bsig candidate: look in ROE for a K⁺ in LHKaonTight list with opposite charged as Btag
- **Do a cut and count analysis** with the following selection cuts:
 - Number of Charged tracks in event < 12
 - → Number of Neutrals in event < 15</p>
 - → R2 < 0.84
 - → $-2.5 < Cos(\theta_{BDI}) < 1.1$
 - → $|M_{D}(rec) M_{D}(PDG)| < 3\sigma$ (mass resolution)
 - \rightarrow M_{DI} > 3.0 GeV/c²
 - → $p^*_{D}(CM) > 0.5 \text{ GeV/c}$
 - → $p^*_{lep}(CM) > 1.35 \text{ GeV/c}$
 - $M_{miss} > 1.0 \text{ GeV/c}^2$
 - $p^*_{signalK}(CM) > 1.25 \text{ GeV/c}$
 - → |Cos(θ[K,DI])(CM)| < 0.8</p>
 - → E_{extra} < 250MeV (see later slide)</p>

- Baseline configuration: BaBar with reduced boost ($\beta \gamma = 0.28$)
- Generated geometries:

- Baseline configuration: BaBar with reduced boost ($\beta \gamma = 0.28$)
- Generated geometries:
 - Baseline + Bwd-EMC + Extended Dch (DG_3)

- Baseline configuration: BaBar with reduced boost ($\beta \gamma = 0.28$)
- Generated geometries:
 - Baseline + Bwd-EMC + Extended Dch (DG_3)
 - Baseline + Bwd-EMC + Fwd-PID (DG_4)

- Baseline configuration: BaBar with reduced boost ($\beta \gamma = 0.28$)
- Generated geometries:
 - Baseline + Bwd-EMC + Extended Dch (DG_3)
 - Baseline + Bwd-EMC + Fwd-PID (DG_4)

Fwd-PID impact studies: strategy

- All MC samples have been generated with flat efficiencies and mis-IDs for all charged Kaons and pions candidates used to reconstruct Btag and Bsig
- Table-based selectors used to test different performances of PID in the forward 28 (coverage from 20° to 25°)
 - Dch+Svt
 - Dch+Svt+Fwf-PID device. Two strategies: DIR-like or fTOF

Fwd-PID impact studies: strategy

- All MC samples have been generated with flat efficiencies and mis-IDs for all charged Kaons and pions candidates used to reconstruct Btag and Bsig
- Table-based selectors used to test different performances of PID in the forward (coverage from 20° to 25°)
 - Dch+Svt
 - Dch+Svt+Fwf-PID device. Two strategies: DIR-like or fTOF

Fwd-EMC impact studies: Veto device (I)

- Quite difficult to reconstruct π⁰s with photons from Bwd-EMC (see Chih-hsiang talk at Frascati SuperB workshop, Dec 2009)
- Previously:
 - Bwd-EMC used as an extension of Barrel-Fwd-EMC \Rightarrow used neutrals from Bwd-EMC to reconstruct B_{tag} and B_{sig} candidates.
 - Results: Increase in signal efficiencies (added badly reconstructed π^0 s)
 - Background efficiencies increased accordingly
- Decided to use Bwd-EMC as a veto device
 - B_{tag} and B_{sig} candidates reconstructed without neutrals from Bwd-EMC
 - Two types of E_{extra} variables:
 - → E_{extra} (Barrel-Fwd) = Σ (extra neutrals on Barrel-Fwd EMC)
 - → $E_{extra}(Bwd)$ = $\Sigma(extra neutrals on Bwd EMC)$
 - Can used E_{extra}(Bwd) to cut on and E_{extra}(Barrel-Fwd) to perform a fit
 - Currently E_{extra} (Barrel-Fwd) use photons with $E(\gamma)_{min} > 30 MeV$
 - Need to define a E(γ)_{min} cut (currently 30MeV) for Bwd-EMC photons (depend on machine background), as well as a cut on E_{extra}(Bwd) (analysis dependent)

Fwd-EMC impact studies: Veto device (II)

- Use Bwd-EMC as a veto has several advantages:
- Can generate all geometries always including Bwd-EMC
- Can decide to use/not to use E_{extra}(Bwd) ⇒ can study Bwd-EMC impact with same sample!
- Above statement is not completely true ...but almost
 - → Muon selectors should be modified due material (Bwd-EMC) before Bwd-IFR. Currently not an issue ⇒ muon selector implement as TableBasedSelector
 - → E/p cut based electron selector currently includes information from Bwd-EMC.
 - It is only optimized for Barrel-Fwd
 - Need to run a different optimization for the Bwd
 - Currently exclude electrons reconstructed in Bwd-EMC
- Vetoing by cutting on E_{extra}(Bwd)
 - Need to understand machine backgrounds
 - Veto is expected to be analysis dependent
 ⇒ different charged and neutral multiplicities in signal side
 - Plan: define a cut which maximized significance.

MC Samples: February 2010 Production

Signal samples: $B^+ \rightarrow K^+ \nu \nu (DG_4)$

- → 1M events Bkg Mixing (BhaBha, Rad-Bhahba)
- 10M events without Bkg Mixing

Background Samples (DG_4):

- B+B- generic:
 - → 4.9M Bkg Mixing
 - → 104.25M without Bkg Mixing
- B0B0 generic:
 - → 6.2M Bkg Mixing
 - → 101.25M without Bkg Mixing
- CC:
 - → 6.6M Bkg Mixing
 - → 102.90M without Bkg Mixing
- uds:
 - → 10.08M Bkg Mixing
 - → 525.20M without Bkg Mixing

- Too low statistics of Background samples with Bkg mixing
- Possible use of background samples without bkg mixing (see next slides)

Bkg mixing (Bhabha/Rad-Bhabha) issue

- BaBar: negligible effect due to relatively low event rate
- SuperB: significant amount of high energy background γs from Bhabhas/Rad-Bhabhas
 ⇒ Bkg mixing samples spoiled
 - Significantly reduced signal efficiency due to number of neutrals cut (<15)
 - E_{extra}(Brr-Fwd) distribution modified
 - Similar effects seen by other analysis using Breco ($B \rightarrow K^{(*)}vv$ and $B \rightarrow \tau v$ Had-Breco)
- Need to re-produce n-tuples with Bkg mixing removing number of neutrals cut
- Need separate Bkg component

 study discrimination against bkg gammas

Use of MC samples without bkg Mixing

Bkg gammas affects signal and background samples in same way

- Higher combinatorics for π^0 and $D^{*0} \rightarrow D^0 \gamma$ reconstruction
- E_{extra}(Brr-Fwd) distribution distorted (shifted to high values)
- Need re-optimize E_{extra}(Brr-Fwd) cut
- Ansatz: can study impact of Fwd-PID and Bwd-EMC using MC samples without bkg mixing
 an at least set upper limit of gains

Fwd-PID device:

- Only affects the reconstruction and selection of Btag and Bsig candidates
- Do not affect main selection cuts (based on kinematics)

Bwd-PID device:

- Gammas from Bhabha/Rad-Bhabas bkg mainly distributed in the fwd-region
- Expects negligible distortion of E_{extra}(Bwd) distribution

Preliminary Results: Fwd-PID

- Compare Fwd-Dch with Fwd-PID (TOF performances from Leonid and Ganna)
- Caveat: low statistics for background samples
- Relative gains:
 - 6.4% Signal
 - 4.8% B⁺B⁻ generic
 - 3.3% B⁰B⁰ generic
 - 6.2% ccbar
 - 6.1% uds
- Main background components not due K/π mis-ID
- Efficiency increase for all samples due to K⁺ efficiency increase
- Background components get lower gains than signal sample

Preliminary Results: Bwd-EMC (I)

Alejandro Perez, DGWG parallel session Mar. 1/th 2010

Preliminary Results: Bwd-EMC (II)

- Study efficiency vs E_{extra}(Bwd) cut for all samples (signal and backgrounds)
- Optimize cut to maximize $S^2/(S+B) \Rightarrow E_{extra}(Bwd)$ cut at ~100MeV
- Efficiencies after E_{extra}(Bwd) cut:
 - ~99% Signal
 - ~80% B⁺B⁻ generic
 - ~99% B^oB^o generic (almost no events)
 - ~80% ccbar
 - ~90% uds

Summary

February 2010 production:

- Several background samples with/without bkg mixing (Bhabhas/Rad-Bhabhas)
- Tree geometries: DG_BaBar, DG_3, DG_4
- Low background statistics to study impact of Bwd-EMC and/or Fwd-EMC

Bkg Mixing issue:

- Significant number of high-energy gammas
- Distorted E_{extra}(Brr-Fwd) distribution (shifted to high values)
- Preliminary Results: Fwd-PID (no Bkg mixing)
 - Main backgrounds do not depend of K/ π mis-ID \Rightarrow global gain in efficiency for all samples (~6.0%)
- Preliminary Results: Bwd-EMC (no Bkg mixing)
 - Use discriminant variable E_{extra}(Bwd) (Bwd-EMC as a veto device)
 - Obtain significant reduction on main backgrounds (~20% for B⁺B⁻ and ccbar)
 - Negligible reduction on signal (~1.0%)

Next steps

- Re-produce n-tuples (including Bkg mixing) removing cut on max. number of neutrals
- Study separate sample of bkg gammas (Bhabha/Rad-Bhabhas)
 - Effects on Btag and Bsig candidates reconstruction: π^0 and $D^{*0} \rightarrow D^0 \gamma$
 - High-energy bkg gammas component on E_{extra}(Brr-Fwd) and E_{extra}(Bwd)
- Will need high statistics background samples (including bkg mixing)
 - Estimate 1ab⁻¹ (~1000M events) for B⁺B⁻, B⁰B⁰, ccbar and uds samples
 - Can perform Fwd-PID and/or Bwd-EMC studies with DG_4
 - Need to coordinate for next production
- Perform similar studies for other modes
 - $B^0 \rightarrow K^0_{S} \nu \nu, B^+ \rightarrow K^{*+} \nu \nu, B^0 \rightarrow K^{*0} \nu \nu, B^+ \rightarrow \tau^+ \nu$
 - Angular analysis for $B \rightarrow K^* v v$

Alejandro Perez, DGWG parallel session Mar. 17th 2010