FDIRC Simulation Status

Doug Roberts University of Maryland

Outline

- FDIRC in FullSim (Bruno)
- Look at chromatic/time correction

FDIRC in Bruno (all support)

An Event

Timing Correction First Look

- I wanted to start looking at what improvements could be gained by using timing to compensate for the chromatic dispersion that degrades the ring resolution.
- Recall:

$$\cos\theta_C = \frac{1}{n\beta} = \frac{1}{n_p(\lambda)\beta}$$

where n_p is the phase index and is a function of wavelength

- Time of propagation depends on the group index, $n_g(\lambda)$
- Bottom line is that this introduces a correlation between the time of a photon's arrival and a shift in $\cos \theta_{c}$

Technique

- The single photon library used to go from detector pixel to photon θ_x and θ_y was generated using monochromatic photons with $\lambda = 410$ nm
 - Near peak of PMT response
- Calculate θ_c and expected time assuming a 410 nm photon
- Expected time requires θ_x , θ_y and time from single photon library, *z* position from track, and which k_z ambiguity was used for this calculation (did it hit the forward mirror or not?)
- Use $(t t_{410})/t_{410} = \{n_g(\lambda)/n_g(410) 1\}$ to determine a correction factor to apply to $\cos\theta_c$ to get back to $\cos\theta_{c410}$

$\theta_{\rm C}$ Resolution vs. $\Delta t/t$

True θ_c - Nominal

Reco θ_c - Nominal

Spread comes from MS. This is a 4GeV π .

Time difference between photons typically less than 1ns ($\sigma\sim$.7 ns)

Use a $3^{\rm rd}$ order polynomial fit to the analytic function

Single Photon θ_c Resolution

3mm x 3mm pixels

Hamamatsu quotes transit time spread of 0.4ns (FWHM) for H8500 and H9500 which would mean sigma = 0.17ns

Single Photon θ_c Resolution

12mm x 3mm pixels

Hamamatsu quotes transit time spread of 0.4ns (FWHM) for H8500 and H9500 which would mean sigma = 0.17ns

Single Photon θ_{C} Resolution

12mm x 6mm pixels

Conclusion

- Chromatic correction looks qualitatively consistent with FDIRC prototype results.
 - Could gain more than about 0.5 mrad in single photon resolution
 - Depends on *z* of track
 - Doesn't explicitly include resolution on track time, but that is common to all the hits
- One (unrelated) thing that concerns me:
 - 1. There is a significant difference in resolution between 3mm and 6mm pixel size in y => 3mm isn't small on scale of ring image.
 - 2. Ring images can be pretty flat in y (see next plot)
 - Tubes have 1.5mm dead space around the edges => 3mm dead space between two tubes
 - 4. Could we have some dead zones were we lose many photons from a single track because of these cracks? Won't just be random loss, but could be very correlated.
 - Stagger the tubes?

4GeV π at 65 ° Boxes are 3mm x 3mm

Example Ring Image

