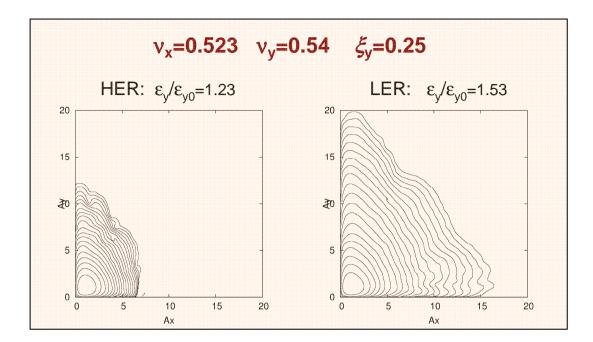
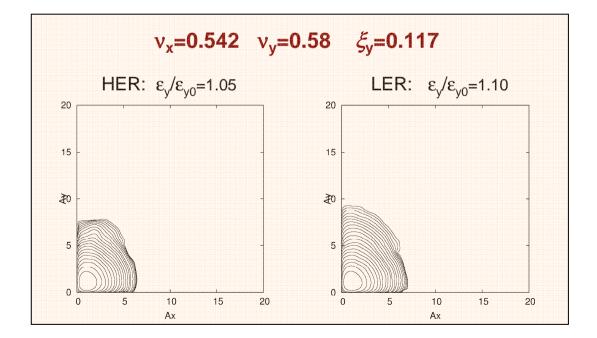

Beam-Beam Simulations for SuperB


Dmitry Shatilov BINP, Novosibirsk

XII SuperB General Meeting Annecy, 17 March 2010 Basic equations: $L \propto \frac{I_{tot} \cdot \xi_y}{\beta_y^*}; \quad \xi_y \propto \frac{N_p \cdot \beta_y^*}{\sigma_z \sigma_y \theta}$

What is the limit for ξ_v ?



Luminosity contour plot vs. the betatron tunes. <u>Parameters as of December 2006</u>, $\xi_y=0.17$. In the red areas the luminosity exceeds 10^{36} cm⁻²c⁻¹.

Asymmetry between LER and HER results in the different beam-beam tune shift limits.

The difference becomes visible when ξ_y is large enough (close to the limit).

List of Parameters LER / HER	
ε _x (cm)	(2.56 / 1.6) ·10 ⁻⁷
ε _y (cm)	(6.4 / 4.0) ·10 ⁻¹⁰
β _x (cm)	3.2 / 2.0
β _y (cm)	0.02 / 0.032
σ _z (cm)	0.5
N _{e,p}	5.74·10 ¹⁰
θ (mrad)	60
ξy	0.117
L (cm ⁻² c ⁻¹)	10 ³⁶

As of September 2009.

Why the design value of ξ_v is so small ?

Advantages of having larger ξ_y: the same luminosity can be achieved with smaller total beam currents, or higher luminosity with the same current. But...
Dynamic Aperture considerations may require shifting the working point to up-right direction.
Technically it can be difficult to achieve larger values of ξ_y with the same bunch current.
IBS and Touschek lifetime considerations.
Luminosity lifetime considerations.

If the designed luminosity of 10^{36} cm⁻²c⁻¹ can be achieved with relatively small ξ_v , why not?

Advantages of having small ξ_v :

- Widening the area of possible working points.
- Both the beam core and tails remain unperturbed.
- We always have a possibility to increase ξ_y without incurring into beam-beam problems – if the other conditions allow.

More reliable simulations must take into account the real nonlinear lattice of the ring.

What prevent us from doing this:

- The lattice is changing too often. Need to wait until it converges...
- The 6D Dynamic Aperture still needs some optimizations...

As soon as we have a stable lattice (nonlinear) we proceed with beam-beam simulations.

Summary

- □ The designed value of ξ_y is far below the limit, so we do not expect any serious problems with beam-beam effects.
- Beam-beam simulations with account of nonlinear lattice are required. They will be performed as soon as the lattice is available and DA optimized.
- The next step will be checking the tolerances on various imperfections. But preliminary estimates are rather optimistic: we do not expect serious problems here.