Beam simulations for the nano beam scheme in SuperKEKB

K. Ohmi, D. Zhou, Y. Seimiya, Y. Susaki SuperB workshop, Annecy, France 16-19 Mar., 2010

Early studies with weak-strong simulations Parameters for Super B Factories a) b-b simulation, b) geometrical							
	SuperKEKB	NanoBeam A2	NanoBeam A4 CW	NanoBeam A5 NCW	NanoBeam A6		
εx (nm) (L/H)	24/18	2.8/2.0	2.8/2.0	33.6/10.7	2.8/2.0		
ey(pm)	nan 240/90	33.6/10.7	33.6/10.7	51.8/24.1	13.4/23.3		
к (%)	1/0.5	1.2/0.53	1.2/0.53	1.8/1.2 5	0.49/1.16		
βx (mm)	200/200	44/25	44/25	10.7/25	17.8/25		
βy (mm)	3/6	0.21/0.37	0.21/0.37	0.20/0.31	0.26/0.26		
σx (μm)	69/60	11/7.07	11/7.07	5.47/7.07	7.06/7.07		
σy (μm)	0.85/0.73	0.084/0.063	0.084/0.063	0.102/0.087	0.059/0.078	$\sigma_{xe,p}/2\Phi < \beta$	
σz (mm)	5/3	5/5	5/5	5/5	5/5	,	
φσz/σχ	0/0	14/21	14/21	27/21	21/21		
σx/φ(mm)	∞/∞	0.37/0.24	0.37/0.24	0.18/0.24	0.24/0.24		
np / ne x10 ¹⁰	12/5.25	10.7/6.17	10.7/6.17	10.7/6.17	10.7/6.17		
Ebp/Ebe (GeV)	3.5/8	3.5/8	3.5/8	3.5/8	3.5/8		
I _{beam} (A)	9.4/4.1	3.42/1.97	3.85/2.22	4.12/2.37	3.84/2.21		
#bunch/Cir(m)	5000/3016	2011/3016	2266/3016	2418/3016	2252/3016		
(mrad) (half crossing angle)	0	30	30	30	30		
ξγ	0.30/0.51	0.090/0.090	0.080/0.080	0.062/0.062	?/?		
Lum	5.3×10 ^{35 a)}	8.0x10 ^{35 a)}	8.0x10 ^{35 a)}	8.0x10 ^{35 a)}	?x10 ^{35 a)}		
L			2.74x10 ³⁵	7.86×10 ³	⁵ 8.00×10)35	

• L

8.09x10³⁵ 9.67x10³⁵ 8.69x10³⁵

• L(CW)

Parameter choice for the nano beam scheme

- HourGlass effect degrades the performance.
- Crab waist recovers the degradation.

Current dependence

• If the condition is satisfied, NoCW is not bad for $\xi < 0.1$.

•Synchro-beta resonance is seen in both cases.

More systematic studies Machine parameters

Parameter	Descript)ion	e+	e.
E (GeV)	Beam energy	4.0	7.0
C (m)	Circumference	3016.2	3016.262
β _x * (mm)	Hor. β at IP	32	25
β _y * (mm)	Ver. β at IP	0.27	0.41
ε _x (nm·rad)	Hor. emittance	3.29	2.3
ε _y (nm∙mrad)	Ver. emittance	17.8	4.7
ε _z (mm·mrad)	Long. emittance	3.89	3.11
v_x	Hor. tune	45.53	59.529
v_y	Ver. tune	45.57	41.57
vz	Synchrotron tune	0.021	0.0117
σ _z (mm)	Bunch length	4.9	4.9
σ _õ (×10 ⁻⁴)	Energy spread	7.96	6.34

Tentative strong-strong simulation

- PIC collision if the separation of two slices is closer than $5\sigma_x$, otherwise Gaussian approximation.
- 6000 PIC, 34000 Gaussian approximation per collision (200x200 slices).

Complete Strongstrong simulation

- Multi-mesh
- Shifted Green function
- The code has been developed. The execution time is huge. Expect next supercomputer in KEK or new type of computers.

Errors and noise tolerances

• The tolerances are evaluated with the weakstrong simulation.

- Collision offset and waist deviation
- x-y coupling and their chromatic aberrations
- Fast noise

Tolerance of collision condition Horizontal collision offset and waist

- Horizontal offset and waist are related to each other.
- The cross point of the waist is only one in x-z plane for the crab waist scheme.

X-Y coupling w/ crab waist

X-Y coupling w/o crab waist

Chromatic X-Y w/ crab waist

∂r/∂δ

200 400 600 800 1000

-1000-800 -600 -400 -200 +0

Chromatic X-Y w/o crab waist

Beam noise

• Turn by turn noise

Summary – tolerance for parameters with 20% luminosity degradation

Parameter	w/ crab waist	w/o crab waist
r ₁ * (mrad)	±5.3	±3.5
r ₂ * (mm)	±0.18	±0.13
r ₃ * (m⁻¹)	±44	±15
r ₄ * (rad)	±1.4	±0.4
$\partial r_1^* / \partial \delta$ (rad)	±2.4	±2.1
$\partial r_2^* / \partial \delta$ (m)	±0.086	±0.074
$\partial r_3^* / \partial \delta$ (m ⁻¹)	$\pm 1.0 \times 10^{4}$	±8400
$\partial r_4^* / \partial \delta$ (rad)	±400	±290
η _γ * (μm)	±62	±31
$\eta_{\nu^{'^{\ast}}}$	±0.73	±0.23
Δx (µm) collision offset	10 1	0
Δs (μm) waist error	100 10	00
δx (μm) turn by turn noise	0.5 0	.5
δy (nm)	4	4

Average and variance of chromaticity (LER, emittance coupling=1%)

Parameter	i=1	i=2	i=3
r _{1i}	-0.23±0.21	-5.9±26.9	-893±2495
r _{2i}	0.06±0.013	-0.98±2.46	-42.9±314
r _{3i}	-292±232	(-1.71±2.25)×10 ⁴	(5.24±26.5)×10 ⁵
r _{4i}	37.3±22.6	(-3.61±1.51)×10 ³	(1.56±1.84)×10 ⁵
$\eta_{ m yi}$	-0.004±0.017	-0.3±3.52	-73±278
η΄ _{yi}	11.8±17.9	-570±1642	(2.17±38.7)×10 ⁴

Microwave instability in Nano beam Collision

- Integrated horizontal beam-beam force along bunch length is Bassetti-Erskine type for tri-Gaussian distribution in x-y-z plane.
- When Micro-wave instability arises, transverse beam-beam force is distorted and fluctuated.

Model wake field

• Low Q resonator model (Y. Cai)

• Threshold of the micro-wave instability is 0.5mA

Simulation result of collision under microwave instability

• Longitudinal profile of the strong beam.

The resonator model is mild for instability.

• Luminosity and the beam size of the weak beam. No remarkable effect except for the bunch lengthening in this impedance model.

Electron cloud issue Threshold of the fast head-tail instability, $\rho_e = 1 - 2 \times 10^{11} \text{ cm}^{-3}$.

 Ante-chamber, Solenoid, coating and grove. The density is reduced $3-6x10^{10}$ cm⁻³. (Y. Suetsugu) 22

Summary

- Tentative strong-strong simulation did not show difficulties in the nano beam collision.
- Crab waist gives better performance and loose tolerances. We should consider the crab waist.
- True strong-strong simulation is prepared.
- Errors and noise tolerances are evaluated. The tolerance may be feasible for the beam dynamical issues, if the design lattice is realized.
- All the difficulties are transferred to lattice design and dynamic aperture issues.
- Show stopper will be in the lattice design and dynamic aperture issue, if exist.