.

BLER

TOLERANCES AND IMPERFECTIONS

Simone Liuzzo

Universitá di Pisa & L.N.F.

16 marzo 2010

ヘロト ヘロト ヘヨト ヘヨト

◆□ → ◆問 → ◆言 → 言 → 言 → ○ Q (や 2/38

Typical Expected Errors (ILC Damping Ring)

Tollerance & Imperfections

rms BPM vertical misalignment	50 µm
rms vertical corrector tilt	500 µrad
rms quadrupole vertical misalignment	50 μm
rms quadrupole tilt	200 µrad
rms sextupole vertical misalignment	100 μm
BPM horizontal resolution	10 µm
BPM vertical resolution	$10 \ \mu m$
systematic BPM gain error	0.01
systematic BPM coupling error	0.01

Typical Expected Errors (ILC Damping Ring)

In this presentation

rms BPM vertical misalignment	$50 \ \mu m$
-------------------------------	--------------

rms quadrupole vertical misalignment $50 \ \mu m$

rms sextupole vertical misalignment $100 \ \mu m$

Objectives	Tools		
Tools			

Tools used for simulation are:

Objectives			
	()h	hve	

Tools

Preliminary P

Plots

onclusions

Future Steps

Work Flow

6/38

Objectives		Tools		
MATL	AB			

Used for:

- interactivity with MADX, graphic interface and MADX input definition
- analyze ANY sequence
- MULTIPLE errors in any element
- MULTIPLE error distributions
- EASY installation of Monitors, Correctors, Skew Quadrupoles at any location
- show and save plots
- Dispersion Free Steering

Objectives		Preliminary Plots	

SIMULATIONS

Objectives		Preliminary Plots	
SIMU	LATIONS		

We use only arcs of HER (sb670v12) + 168 H correctors and BPM + 168 V correctors and BPM

Monitor and Correctors Scheme:

- correctors:
 - after every quadrupole, sextupole, octupole
 - only if there are **more than 40cm** of available space.
 - at **center** of available space
- monitors at every quadrupole, sextupole, octupole

9/38

Orbit Response Matrix calculation

Every column is the change in H and V orbit at BPMs due to change of one Corrector

Same for Dispersion Response Matrix (DRM) calculation dispersion calculated from monitor readings with $\pm 2.5 \cdot 10^{-3} \frac{\Delta p}{p}$

10/38

Preliminary Plots

Conclu

Future Steps

Dispersion Free Steering

ORM Steering

$$\left(\begin{array}{c} \vec{M} \end{array} \right) = \left(\begin{array}{c} ORM \end{array} \right) \times \left(\begin{array}{c} \vec{K} \end{array} \right);$$

SVD to invert the Response Matrix

< □ > < □ > < □ > < 亘 > < 亘 > < 亘 > 三 の Q () 11/38

(日) (同) (E) (E) (E)

Dispersion Free Steering

Dispersion Free Steering

$$\begin{pmatrix} (1-\alpha) \cdot \vec{M} \\ \alpha \cdot \vec{D} \end{pmatrix} = \begin{pmatrix} (1-\alpha) \cdot ORM \\ \alpha \cdot DRM \end{pmatrix} \times (\vec{K});$$

SVD to invert the Response Matrix

$$\begin{pmatrix} \vec{K} \end{pmatrix} = \begin{pmatrix} (1-\alpha) \cdot ORM \\ \alpha \cdot DRM \end{pmatrix}_{Neigen}^{-1} \times \begin{pmatrix} (1-\alpha) \cdot \vec{M} \\ \alpha \cdot \vec{D} \end{pmatrix}$$

Dispersion Free Steering allows to correct simultaneously orbit and dispersion

イロト イポト イヨト イヨト

study of correction in function of number of eigenvalues used

$100 \mu m$ vertical misalignement for quadrupoles

 $\alpha = 0.0$ (ONLY ORBIT) number of eigenvector used ${\bf 50}$

study of correction in function of number of eigenvalues used

$100 \mu m$ vertical misalignement for quadrupoles

 $\alpha = 0.5$ (DFS) number of eigenvector used **50**

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Preliminary Plots

study of relative weigth α

with a vertical displacement of 100 μm for quadrupoles

α	$y_{rms}(\mu m)$	$D_{y_{rms}}(\mu m)$	$\epsilon_y(pm \cdot rad)$
0.1	65.459	1814.5	$5.4984 \cdot 10^{-2}$
0.3	71.956	952.98	$3.7477 \cdot 10^{-2}$
0.5	75.421	858.04	$3.9574 \cdot 10^{-2}$
0.7	76.613	849.69	$4.1086 \cdot 10^{-2}$
0.9	76.911	849.43	$4.1508 \cdot 10^{-2}$

Correction Scheme ($\simeq 20$ s)

- first step: 1 iteration, only ORM sextupoles OFF
- 2 second step: 1 iteration, DFS Sextupoles ON

Preliminary Plots

study of relative weigth α

with a vertical displacement of 100 μm for quadrupoles

α	$y_{rms}(\mu m)$	$D_{y_{rms}}(\mu m)$	$\epsilon_y(pm \cdot rad)$
0.5	75.421	858.04	$3.9574 \cdot 10^{-2}$

 $\alpha = 0.5$ used

Correction Scheme ($\simeq 20$ s)

first step: 1 iteration, only ORM sextupoles OFF

2 second step: 1 iteration, DFS Sextupoles ON

Preliminary Plots

Coi

Future Step

Single error set simulation

100 iterations applied errors are:

- vertical Quadrupoles rms misalignement $100 \mu m$
- vertical sextupoles rms misalignement $100 \mu m$
- BPM rms offset $100\mu m$

Y rms (m) Closed Orbit Before and After Correction

ots C

s _Fi

ϵ_y (m· rad) Before And After Correction

Dy rms (m) Before And After Correction

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

∃ >

18/38

BPM reading Before And After Correction

Preliminary Plots

Plots

usions

Future Steps

Multiple error set simulation

50 iterations, 5×10 errors rms applied errors are:

- vertical Quadrupoles rms misalignement $20 \Leftrightarrow 200 \mu m$
- vertical sextupoles rms misalignement $20 \Leftrightarrow 200 \mu m$
- BPM rms offset $20 \Leftrightarrow 200 \mu m$

Y rms Closed Orbit Before and After Correction

σ = applied error rms [μm]

A=amplification factor

ary Plots

nclusions

Future Steps

ϵ_y (m· rad) Before And After Correction

Dy rms (m) Before And After Correction

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > < 回 > < 0 < 0</p>

22/38

BPM Offset

30 iterations, 3 \times **10 errors rms** applied errors are:

• BPM rms offset $30 \Leftrightarrow 300 \mu m$

y rms (m) Before And After Correction

24/38

BPM reading Before And After Correction

 $90\mu m$ rms BPM offset.

Future Steps

Dy rms (m) Before And After Correction

Tools

Preliminary Plots

ry Plots

onclusions

Future Steps

BPM reading Before And After Correction DISPERSION

 $90\mu m$ rms BPM offset.

lots (

clusions ____

Future Steps

ϵ_y (m· rad) Before And After Correction

BPM Offset effect, with and without DFS

- vertical Quadrupoles rms misalignement $30 \Leftrightarrow 300 \mu m$
- vertical sextupoles rms misalignement $30 \Leftrightarrow 300 \mu m$
- **300** µm **BPM OFFSET**

Y rms Closed (m) Orbit

Green= No BPM Offset

Red=300 µm BPM Offset

with DFS ($\alpha = 0.5$)

Only orbit ($\alpha = 0.0$)

Green= No BPM Offset Red=300 μm BPM Offset

with DFS ($\alpha = 0.5$)

Only orbit ($\alpha = 0.0$)

Green= No BPM Offset Red=300 μm BPM Offset

with DFS ($\alpha = 0.5$)

Only orbit ($\alpha = 0.0$)

Objectives			Conclusions	
Conclus	ions			

- implemented DFS and estimated optimum number of eigenvectors for correction
- 100 µm of **independent** misalignement of Quadrupole and Sextupoles are tollerable
- Dispersion Free Steering allows very good correction, avoiding orbit bumps.

(日) (同) (E) (E) (E)

• Dispersion Free Steering allows to work with 300 μm BPM Offset.

WORK IN PROGRESS

- X plane correction
- include Final Focus
- Coupling Correction
- Optimize number of correctors

Objectives			Future Steps

END

Tools

Preliminary Plot

ry Plots

Conclusions

Future Steps

Matlab GUI used for simualtions

Objectives					
		Defini	itions		
		Monitor	r Errors		
		GA	IN		
	reading multi	plied by a	a factor 1+ giver	n error	
		MSCAI	LX=0.1		
	read	ling=1.1*	true reading		
		Read	ling		
	readii	ng= true 1	reading+ error		