XII SuperB General Meeting, Annecy, 17/03/2010

Simulation and Detector Optimization

G.Cibinetto, N.Gagliardi, M.Munerato and M.Rotondo

Outline

- IFR configurations;
- DBT inputs;
- Efficiencies and Mis-ID distributions (as function of p);
- DBT procedure tuned in 4 p-bins;
- Noise and real detector efficiency;
- Forward and Barrel regions from events coming from B→Dlv decays
- Conclusions.

Different IFR configurations

Boost Decision Tree Inputs I

We use 9 discriminating variables to separate signal from background

Boost Decision Tree Inputs II

5

Boost Decision Tree Inputs III

BDT output

Cut on BDT requiring an average Mis-ID of 2%
We extract the efficiency and mid-ID as function of the μ/π momentum
C₂' configuration seems to be the best

BDT optimization

•BDT technique optimized in 4 bins of the μ/π momentum •Extracted the muon efficiency for each momentum bin requiring a pion MisID of 2%

Noise and real detector efficiency

Forward and Barrel regions from events coming from B→Dlv decays

Conclusions

- •BDT is an useful tool to discriminate the different IFR configurations
- •The study performed show C_2' is the best option
- •We need background simulation with more realistic distributions ${}^{\bullet}K_{\rm L}$ ID

Backup slides

BDT optimization: 0 < p < 1.5 GeV/c

BDT optimization: 1.5 < p < 2.5 GeV/c

BDT optimization: 2.5 < p < 3.5 GeV/c

2.5 < p < 3.5

BDT optimization: 3.5 < p < 5.0 GeV/c

3.5 < p < 5.0 1-MisiD 0.99 0.98 . . 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9^上 0.7 0.75 0.85 0.95 0.8 0.9 Efficiency

Noise and real Detector Efficiency

