

Spatial autocorrelation study for laser beam quality estimation

Jessica Scifo

A. Del Dotto, M. Ferrario, R. Pompili,
F. Villa

Outline

- Motivation
- Analytical definition of spatial autocorrelation index
- Autocorrelation estimation and GPT electron beam emittance evaluation for:
 - Meshed beam
 - Real laser spots
- Conclusions

Motivation

Motivation of this study: <u>High Brightness electron beam</u>

$$B[A/m^2] = \frac{Ne}{V_{6D}} \propto \frac{Q}{E_{nx}E_{ny}\sigma_t\sigma_\gamma}$$
 High beam charge Low emittance

- Contributions to emittance degradations come from electromagnetic fields' nonlinearity which can be reduced using a <u>transversally and longitudinally uniform</u> <u>beam</u>.
- > Aim of this work: <u>To find an additional parameter able to evaluate the transverse laser beam uniformity</u>

Given a beam spot, represented by a matrix NxM, we can evaluate:

Non uniformity

Standard deviation σ_a

How non uniformity is distributed ——

Index of spatial autocorrelation Λ

Samples at distance h around aij

a_{ijh} is the mean of the samples localized around the main sample a_{ij}:

$$a_{ijh} = \frac{1}{(2h+1)^2 - 1} \left[\sum_{l=-h}^{h} \sum_{m=-h}^{h} a_{i+l \ j+m} - a_{ij} \right]$$

Non uniformity

$$var(a) = \frac{1}{T} \sum_{i=1}^{N} \sum_{j=1}^{M} (a_{ij} - \langle a \rangle)^2$$
 variance

$$\langle a \rangle = \frac{1}{T} \sum_{i=1}^{N} \sum_{j=1}^{M} a_{ij}$$
 mean

where T=NM.

$$\sigma_a = \sqrt{\operatorname{var}(a)}$$

Standard deviation

Standard deviation σ_a describes the contrast between spots in an image: σ_a ->0 means the image is uniform

How non uniformity is distributed

The index Λ of spatial autocorrelation is defined as:

$$\Lambda(a,h) = \frac{\text{cov}(a,h)}{\sigma_a^2}$$
 with $-1 \le \Lambda \le 1$

where cov(a,h) is the covariance matrix, defined as:

$$cov(a,h) = \frac{1}{T} \sum_{i=1}^{N} \sum_{j=1}^{M} (a_{ij} - \langle a \rangle) \cdot (a_{ijh} - \langle a \rangle)$$

The quantity covariance answers the question whether a sample and its neighbour are at the same time different or not from the mean

Autocorrelation estimation of meshed beam

Cosine-like distribution of spots model

 \succ The charge distribution extracted from the cathode has been modelled as a sine and cosine function having a frequency n and a charge intensity δ

$$\rho(i,j) = \rho_0(1 + \delta \cos k_n i)(1 + \delta \cos k_n j)$$

where

$$k_n = \frac{2\pi n}{R}$$

with R is the beam radius, ρ_0 is the normalization constant.

n=2

n=6

Autocorrelation estimation

Mean=0.30 σ =0.29 (n=1)

Case n=1: (h/R)*=0.5R=78 pixel Camera Pixel size=6.45 μm/pixel

 $h*(\mu m)=0.5xRx(6.45\mu m/pixel)=256 \mu m$

mean distance of the non homogeneity <u>h*</u>×pixel size(µm)

Mean=0.25

Mean=0.25 σ =0.28 (n=10)

GPT simulation with meshed beam

GPT Parameters.

- E_{RF} = 115MV/m
- Working RF phase=30°
- Laser pulse length=2ps rms (Gaussian profile)
- Laser radius =500 μm (Flat top profile)
- E= 5MeV Electron beam energy
- Bunch charge = 50pC
- $\varepsilon_{intr} = 0.55 \,\mu m/mm$ (normalized intrinsic emittance)
- I_{picco}≃14.5 A
- Particles number=50000
- Mesh number: $N_x = N_{v=} 80$, $N_z = 50$

Ideal laser spot

Electron beam emittance versus autocorrelation length (meshed beam)

- \checkmark ε₀= 0.55 μm/mm (value for the ideal laser spot image)
- From the GPT simulation we have extrapolated the beam emittance value at about 1 cm from the photocathode surface

Autocorrelation estimation of real laser spots

Real laser spots and autocorrelation estimation

Laser 2 Mean= 0.39 σ=0.14

Laser 3 Mean= 0.25 σ=0.07

Laser 4 Mean= 0.32 **σ**=0.10

Laser 5 Mean=0.33 σ=0.13

Laser 1 Mean= 0.135 σ= 0.05

GPT simulation with real laser spots

GPT Parameters.

- E_{RF} = 115MV/m
- Working RF phase=30°
- Laser pulse length=2ps rms (Gaussian profile)
- Laser radius =500 μm (Flat top profile)
- E= 5MeV Electron beam energy
- Bunch charge = 50pC
- $\varepsilon_{intr} = 0.55 \,\mu m/mm$ (normalized intrinsic emittance)
- I_{picco}≃14.5 A
- Particles number=50000
- Mesh number: $N_x = N_{v=} 80$, $N_z = 50$

Ideal laser spot

Electron beam emittance versus autocorrelation length (real laser spots)

- \checkmark ε₀= 0.55±0.02 μm/mm (value for the ideal laser spot)
- From the GPT simulation we have extrapolated the beam emittance value at about 1 cm from the photocathode surface

Real laser spot	ε (μm)	ε/ε ₀	(h/R)*
Laser 1	0.62±0.02	1.13±0.06	0.218
Laser 2	0.59±0.02	1.08±0.06	0.166
Laser 3	0.58±0.02	1.04±0.06	0.168
Laser 4	0.58±0.02	1.06±0.06	0.166
Laser 5	0.59±0.02	1.08±0.06	0.166

J. Scifo

Conclusions and to do list

- The standard deviation determines the contrast while the autocorrelation index determines how the non-uniformity are distributed
- They describe the laser beam quality, concerning the uniformity, and they give an idea of the emittance growth due to the laser beam degradation
- The parameter (h/R)* is a good estimator of the beam quality since it is strictly correlated with beam emittance at the emission!

- Future directions:
 - experimental emittance measurements with masks
 - systematic study with larger laser dataset

Finally it's over

Thank you for your attention