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q The work presented in this section has been carried out by the SwissFEL team:

§ A big acknowledgment goes to all the colleagues who contribute to it (and, I 
hope, cited in a right way in the talk). 

§ To prepare my slides, I have especially used material from: Simona Bettoni, 
Eduard Prat, Philip Dijkstal, Sven Reiche, Laser Group (Carlo Vicario et al.), 
Thomas Schietinger, Marco Pedrozzi, Qiao Geng

q In this talk I have summarized studies done at PSI in the last 9 years and in particular 
measurements performed in:

§ SwissFEL Injector Test Facility (SITIF): from 2010 to 2014

§ SwissFEL: from Summer 2016 to now

Credits
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Outline
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q RF source and photocathode
v 2.5 cell S-band gun

v Laser system and shaping

q Definition of the working point
v Emittance measurements and minimization

q RF jitter and beam stability
v Improvement of RF Gun Field measurements

q Linearization in BC1
v Using passive devices

q What’s next at SwissFEL injector?



Introduction to the SwissFEL 
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Main parameters

Wavelength            0.1 nm–5 nm

Photon energy 0.2-12 keV

Pulse duration 1 fs - 20 fs (rms)

e- Energy (0.1 nm) 5.8 GeV

e- Bunch charge     10-200 pC

Repetition rate        100 Hz

Overall length 740 m

ARAMIS
Hard X-ray FEL, λ=0.1 - 0.7 nm (12-2 keV)
Linear polarization, variable gap, in-vacuum undulators
User operation from 2018

ATHOS
Beam Energy 2.7 – 3.3 GeV
Soft X-ray FEL, λ=0.65 - 5.0 nm (2-0.2 keV)
Variable polarization with Apple-X undulators (2-m long)
Commissioning starts in December 2019

S-band 9x C-band 4x C-band 13x C-band



Machine Evolution
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Courtesy of T. Shietinger

6.1 GeV@12.4 keV 
(compressed beam)

mailto:GeV@12.4
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RF Gun Injector S-band

Linac 
C-band

SwissFEL RF System in Tunnel



SF injector (similar layout in SITF)
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2.5 cell S-band RF gun 
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q Best design features from LCLS and CTF/PHIN RF 
guns adopted

q Machined “on tune” according to HFSS

q No tuning plungers

q No tuning step during machining

q Quadrupole compensated symmetric coupler

q Load lock chamber

RF and mechanical design: PSI

Fine machining cavities : VDL

Pre-machining & brazing: PSI workshop 7.1 MeV @16 MW, 1µs, 100 Hz



From RF design to copper

Page 9

Cooling system was design for operation at 400 Hz  



Field balance and dark current
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à frequency spectrum and field balance verified 
with the bead-pull method

à frequency and field balance as a function of the 
force applied to the cathode plug

à on- axis electric field profiles for different 
positions of the cathode plug

à Dark current versus electric field at cathode gun, 
rep. rate 10/100Hz, Cu and Cs2Te



RF conditioning at SITF
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Blue lines: RF power
Green: vacuum pressure



Gun installed in SwissFEL
First beam August 24, 2016

Cs2Te coated copper cathode, QE ~0.7% Laser alignment cathode



Cs2Te coated copper cathode
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v Cs2Te coated copper cathode installed since July 2017.

v Quantum efficiency stable at about 0.7% with uniform 
distribution around the laser spot until spring 2018

v The apparent QE of Cu_31 is now around 0.1%. The QE has 
dropped after the shutdown of November 2018 around 0.1% 
(still good for the operation)

v This summer we replaced the cathode 

2 mm

Courtesy of R. Ganter



Photocathode laser
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ØALCOR Yb:CaF2
(Advanced Laser for photo-Cathode and Optical Replica):

Photocathode (λ=260 nm):  
§ Energy up to 500 µJ (at cathode 0.05-1 µJ for QE~2-0.1%)
§ 0.65 FWHM gaussian pulses
§ 3.3-10 ps flat-top by stacking
§ 7-11 ps gaussian by UV stretcher
§ UV laser stability at the cathode better than 0.8 % rms

Courtesy of C. Vicario et al.

v Solid state Yb:CaF2 (Ytterbium:Calcium Fluoride) chirped pulsed amplifier with excellent stability and uptime

v Variable circular aperture allows optimization of beam size on cathode (low emittance)

v Approximate flat top profile with pulse stacking – beam based profile optimization

v Systematic comparison pulse-stacked versus stretched Gauss profile.

v Standard operating procedure for routine gun-laser check – fundamental for stability and reproducibility of 
the facility
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Laser shaping (laser group): Cu vs Cs2Te
Q = 15 pC (Lt = 10 ps FWHM) Q = 200 pC (Lt = 10 ps FWHM)

t

Profile at SITF Profile at SwissFEL

Longitudinal:
vOptimization done manually and 

tuned with a simplex based code
vUsed the uncompressed low charge 

beam (closest to the bunch profile 
at the cathode)

Transverse:
v Transverse shaping because of a large QE 

a lot of laser intensity can be used
v Important to have enough reserve of

energy for the manipulations of the laser
beam in order to have a good
homogeneity. 

Laser for Cu Laser for Cs2Te

Courtesy of C. Vicario et al.
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Laser stacking at SwissFEL

STACKING

GAUSSIAN

GUN INJECTOR LINAC 1 LINAC 2

BC1 BC2

LINAC 3

ENERGY COLLIMATOR

ARAMISE = 300 MeV E = 2.1 GeV E  = 5.8 GeV

ATHOS

TUNING LINAC
E  = 2.6-3.6 GeV

E  = 3.1 GeV

Beam longitudinal phase space measured at high energy

t
E - Energy structures 

still present
- Current 

modulation 
observed

- LH not efficient at 
this wavelength

- Smoother profile
- LH not necessary
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Definition of the working point
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Figure of merit (FOM) optimized is a weighted combination of the mean optics mismatch and slice 
emittance over ¾ of the bunch duration:

where the mismatch parameter is calculated as:
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Injector working point optimization

Optimal working point corresponds to a slightly different 
condition than the invariant envelope (booster located more 
downstream)
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where *_0 indicates the values of 
the projected bunch and a , b, g
are the Twiss parameters

Reduction of the design emittance compared to the CDR (novel 
working point and measured thermal emittance) Courtesy of S. Bettoni



Design emittance for SF
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Q = 200 pC Q = 10 pC

@ 550 nm/mm→ 140 nm @ 550 nm/mm→ 40 nm

One of the highest brightness source for FEL hard X-ray facility
About 70% of the total emittance is given by the intrinsic emittance

S. Bettoni et al., PRST AB 18, 123403 (2015)



Emittance measurements (1)

Page 20



Emittance measurements (2)
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Slice emittance measurements at SwissFEL (1)
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Slice emittance measurements at SwissFEL (2)
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Scan index

Courtesy of E. Prat



Emittance resolution, errors and matching
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Smallest measured emittance
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Source characterization
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Laser wavelength dependence
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Field at the cathode dependence
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E. Prat et al., PRST AB 18, 063401 (2015)



Quadrupolar field effect
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vMost of our intrinsic emittance measurements were performed with the CTF gun

à symmetric rf feed design to avoid dipolar kicks, but has no compensation of quadrupolar 
fields

à These quadrupolar fields lead to a quadratic rise of the emittance as a function of the laser 
spot size. 

vSwissFEL gun:  quadratic effect is less pronounced (racetrack shape in the coupler cell)

Courtesy of E. Prat



Normalized thermal emittance
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E. Prat et al., PRST AB 18, 043401 (2015) 

normalized to a laser wavelength of 
262.0 nm and to a cathode field of 
50 MV/m
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Measured emittances in SwissFEL
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Courtesy of E. Prat et al. – submitted PRL (accepted)

Normalized slice emittance measurement 
after nominal compression for a beam 
charge of 200 pC at 6 GeV 

Lowest emittance for an X-ray FEL measured 
(to our knowledge)

Measured normalized emittances for 200 pC and 10 pC
at different linac location 



Few fixed points

vEmittance
§ Normalized thermal emittance ~ 550 nm/mm

§ Dependencies with the photon injector parameters measured

§ Design optimization + low thermal emittance → high brightness injector

§ Systematically correct for the coupling (quad and skew quad corrector in the gun solenoid)

vCs2Te vs Cu photocathode
§ Similar thermal emittance, but Cs2Te semiconductor gives orders of magnitude larger QE

§ Better uniformity of the transverse laser profile

§ Cs2Te acts as a low band pass filter for the laser profile → less microbunching instability

§ Simona is preparing a paper on this topic
§ Also with the very good longitudinal profile and Cs2Te the stacking configuration does not look 

promising for FEL



RF jitter and Beam Stability in the SF linac 
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Aramis beam stability requirements (RMS):
• Peak current (bunch length): < 5 % 
• Beam arrival time: < 20 fs
• Beam energy: < 5e-4



Station Pulse-to-pulse Amplitude and Phase Jitter
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q RMS jitter is calculated with the 10-min 
amplitude/phase data with beam (RF rep. rate 
100 Hz, statistics with beam rate 25 Hz).

q Gun measurement problem:
§ Contains high-frequency noise (not averaged 

in pulse) and other passband mode (π/2-
mode): beam feels less jitter.

§ Problematic cavity probes.
q Linac1 C-band #6 pre-amplifier failed and 

resulted in large amplitude drift in open loop 
operation.

q Large phase jitter in some C-band stations –
BOC and klystron multipacting.

Data collected from SwissFEL at
July 13, 2019 13:44–13:54

Phase feedback: all ON

Amplitude feedback: 
• S-band & X-band: ON
• C-band: OFF (saturation)
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Gun probe, forward and 
reflected waveforms. Amplitude and phase pulse-to-

pulse data of Gun cavity field 
(vector sum of probe signals).

Spectrum of amplitude and 
phase pulse-to-pulse data.

Possible sources of resonant peaks:
q Cavity probe is sensitive to the mechanical vibration major caused 

by cooling water flows.
q Pass-band mode signal aliased back to the Nyquist band of beam 

repetition rate (25 Hz).

Example: RF Gun Amplitude and Phase Jitter

Courtesy of Q. Geng
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Use virtual probe to replace the probe signal.

Construction of virtual probe:
Vector sum of measured forward 
and reflected signals:

Calibration of m and n:
Linear fitting with the “Pb1” and 
measured forward and reflected 
signals.

, ,

, ,

for for mea ref mea

ref for mea ref mea

= + üïÞý= + ïþ

v av bv
v cv dv

, ,

 
probe for ref for mea ref mea= + = +v v v mv nv
(m = a +c, n = b +d)

Due to beam-based FB.

Virtual 
Probe

Improvement of RF Gun Field Measurement



q Beam jitters can be predicted from RF 
measurements via the response matrix and 
directly measured with beam diagnostics.

q When collecting data, all longitudinal 
feedbacks OFF.
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At BC2 Exit:

§ Measured beam energy jitter: 2.3e-4 RMS 
(goal: 5e-4)

§ Measured bunch length jitter:  11.8 % RMS 
(goal: 5%)

§ Measured arrival time jitter (see next page):                          
13 fs RMS (goal: 20 fs)

Data collected from SwissFEL at
July 13, 2019 13:44–13:54

Estimation and Measurement of Beam Jitters
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Measured arrival time jitter: 16 fs RMS
Estimated actual bunch arrival 
time at the end of Linac 3 of 
SwissFEL:

Deflector RF time jitter: 10 fs

2 2
, 16 10 13 fsb RMSt = - »

Bunch Arrival Time Mea. with C-band Deflector
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q The correlation strength shows the 
potential RF stations that have large jitter 
and require improvements. 

q Conclusion from the correlation on right 
side:
§ RF Gun stability need improvement;
§ X-band stability needs special focus 

– need to be improved even better 
than the original stability 
specification in CDR;

§ Linac 1 C-band phase stability 
(mainly due to BOC multipacting) 
needs improvement.

Data collected from SwissFEL at July 13, 2019 13:44–13:54

Correlation between bunch length jitter 
measured with CDR (BCM) and jitter sources.

BC2 bunch-length jitter:RF-beam Jitter Correlation
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Summary :

q SwissFEL RF system has reached its nominal working point: 5.8 GeV energy 
gain @ 100 Hz. Linac3 can provide 2 spare RF stations in hot-standby.

q Most RF stations satisfy the stability requirements. Improvements are needed 
for the RF Gun, X-band and several Linac 1 C-band stations. The X-band 
phase jitter is one of the major sources for the bunch length jitter and a 
tighter stability requirement should be applied. 

Outlook for Future:

q Stability improvement: 
§ Improve the X-band stability by improving the pre-amplifier (already replaced) 

and modulator;
§ Understand and mitigate the phase jitter synchronous to beam (e.g. Linac1 #7);
§ Mitigate all the C-band stations with BOC multipacting.
§ Evaluate the drifts in RF reference distribution system and LLRF system.

RF jitter and Beam Stability (comments)
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Beam manipulation using passive devices
i.e. linearization in BC1 

Just one comment on the X-band active system for the linearization: we are 
using two 70-cm long X-band structures in order to limit the RF from the 
klystron (~10 MW)  
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Beam manipulation using passive devices 

3 different metallic 
corrugation: dechirper, 
linearizer, 2-color generation

GUN INJECTOR LINAC 1 LINAC 2

BC1 BC2

LINAC 3

ENERGY COLLIMATOR

ARAMISE = 300 MeV E = 2.1 GeV E  = 5.8 GeV

ATHOS

TUNING LINAC
E  = 2.6-3.6 GeV

E  = 3.1 GeV
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Beam manipulation: linearization

Passive structures at gap = 2.5 mm 

S. Bettoni et al., IPAC 2019, MOPGW07

Without X-band 
active system

With X-band 
active system

With passive 
system

centroid position of slices 
along the bunch for different 
gaps

Measured beam longitudinal phase space

Nominal X-band 
voltage 

Reduced X-band 
volt.

Reduced X-band 
volt + passive
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What’s next at SwissFEL injector?
i.e. SwissFEL Electron Source: Margins 
of Improvement?



Injector Optimization: Combining RF and Beam Dynamic 

Page 47M. Schaer et al, PR AB 19, 072001 (2016)



What’s next? RF Travelling-Wave Electron Gun
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q Motivation: exploring new designs of electron source at C-band frequency that could 
represent a future upgrade of the SwissFEL injector. 

q Approach: higher electric field at cathode with shorter RF pulses

q Brightness a factor 3 higher than the SwissFEL

q Peak current a factor 2 higher than SwissFEL gun

q Very conservative value of the field at cathode (135 MV/m with a 
filling time < 100 ns)

q With 200 MV/m à Brightness 3870 (TA/m2) (factor 4 higher)

M. Schaer et al, PR AB 19, 072001 (2016)



C-band RF Travelling-Wave Electron Gun
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C-band TW Gun
Frequency 5.712 GHz
Phase advance per cell 60 deg/120 deg
# cells 21/10
Structure length 215/220 mm
Q 4700/10000
Filling time 73/90 ns
Iris radius 5.5 mm 
Group velocity 0.95/079 % of [c]
Nominal gradient 135 MV/m
Nominal power 57.9/37.4 MW
Repetition rate 100 Hz

M. Schaer et al., PR AB 19, 072001 (2016). 

An innovative coaxial RF coupling from the cathode side enables

q the placement of the focusing solenoid around the cathode with a simplified magnet design that 
integrates main and bucking coil

q the elimination of the quadrupole components of the RF fields in the region where the beam is 
accelerated

q the introduction of gaps with vanishing RF fields, making the gun compatible with the load-lock 
system without the need of special RF contacts



WLHA: RF test facility for SwissFEL upgrade
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X-BandC-Band

S-Band 

Montage Areal LLRF

Bunker already used for SITF 
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Wir schaffen Wissen – heute für morgen

THANK YOU


