

R&D activity and plans CSN1 referee meeting, 24 September 2019

Matthew Moulson INFN Frascati

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS

400-GeV SPS proton beam (2 × 10¹³ pot/16.8 s) See also: KLEVER at KAON 2019 (link) incident on Be target at z = 0 m

Status and timeline

Project timeline – target dates:

2017-2018 Project consolidation and proposal

- Participation in Physics Beyond Colliders
- Beam test of crystal pair enhancement
- Input to European Strategy for Particle Physics
- **2019 Q3** Expression of Interest to CERN SPSC
- 2020 Q2 Conclusion of European Strategy update KLEVER proposal
- 2019-2021 Detector R&D
- **2021-2025** Detector construction
 - Possible K12 beam test if compatible with NA62
- **2024-2026** Installation during LS3

2026- Data taking beginning Run 4

Small-angle photon veto

Small-angle photon calorimeter system (SAC)

- Rejects high-energy γ s from $K_L \rightarrow \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 430 MHz of beam neutrons

Baseline solution:

 Tungsten/silicon-pad sampling calorimeter with crystal metal absorber to exploit enhancement of photon conversion by coherent interaction with lattice

Alternate solution: Ultra-fast heavy Cerenkov calorimeter (e.g. PADME, g-2)

Beam comp.	Rate (MHz)	Req. 1 – ε
γ, <i>E</i> > 5 GeV	50	10 ⁻²
γ, <i>E</i> > 30 GeV	2.5	10-4
п	430	_

Test beam analysis

BC1

Test beam with AXIAL (CSN5)

Calorimeter energy calibration

Target

T2

August 2018

CERN SPS H2 line

S1 - S2

T1

Recent progress:

BC2

γ CAL

e CAL 1

e CAL 2

e CAL 3

e CAL 4

e CAL 5

S4

BC3

BC4

S3

GC

1. Data preparation, calorimeter calibration, preliminary analysis (Como)

G. Ballerini, Laurea, Univ. Insubria, March 2019

- 2. Data analysis in progress with full calibrations (CERN summer student, Frascati, Ferrara)
- 3. Continued development of simulation including coherent interactions (Ferrara)

Cerenkov small-angle calorimeter

PADME SAC = In-beam PbF₂ Cerenkov calorimeter

- PMT readout: Hamamatsu R13478UV (25 ch)
- FADC sampling: 2.5 GS/s, 1024 samples
- Time resolution $\sigma_t < 100 \text{ ps}$
- 2-pulse separation at ~ 1 ns

Questions for future development

- PbF₂ needs validation for use at continuous high rates and high radiation doses
 - Verify radiation-hardness or identify alternatives (e.g. PWO)
- Optimization of design with SiPMs:
 - Time resolution
 - Radiation hardness
- Study suitability of design for $K_L \rightarrow \pi^0 v v$
 - Response to neutral hadrons
 - Possibilities for γ/n discrimination: multilayer structure/longitudinal segmentation?

AIDA++ projects:

- Instrument R&D
- Calorimeter readout

Exploit coherent interactions in *oriented* Cerenkov crystals to enhance pair conversion?

 ERC Starting Grant proposal in development (L. Banidera)

Beam tests with tagged photons

Measurements with tagged photons essential for development of rare-decay experiments with photon veto ($K_L \rightarrow \pi^0 v v$, dark photons, etc.)

 Challenging to obtain single-photon tag of sufficient quality to measure very small (< 10⁻³) inefficiencies!

Frascati Beam-Test Facility (BTF):

• 550 MeV single e^+/e^- from DA Φ NE linac: ideal for measurement of lowenergy efficiencies:

- Recently upgraded with installation of new BTF-2 beamline
 (AIDA2020 T15.4)
- Photon-tagging systems upgraded (AIDA2020 D15.5)
 - New readout with zero-suppression and self-trigger
 - Not yet installed and commissioned
- PADME and KLEVER ideal test cases for further development and possibility of enabling measurements of very small inefficiencies

Develop sensitive photon tagging techniques to be used at higher energy:

- MAMI 1600 MeV electrons and tagged photons; experience with tagged photon measurements
- **DESY II** 1-6 GeV electrons with possibility of tagged photon beam

Shashlyk calorimeter with spy tiles

Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

0.275 mm Pb + 1.5 mm scintillator

PANDA/KOPIO prototypes:

- σ_E/√E ~ 3% /√E (GeV)
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , n interactions
- Shower depth information: improved time resolution for EM showers

1st prototype assembled and tested at Protvino OKA beamline, April 2018

Beam tests at Frascati

Start with basic studies: validate with single electron beam

- Energy resolution
- Time resolution
- Efficiency

Further directions:

- Optimization of depth and longitudinal separation
- Measure efficiency with tagged photon beam

Beam test program:

- Single electron beam (50 Hz)
- 550 MeV \rightarrow 200 MeV (or lower)
- Request 1 week at BTF after PADME (March 2020?)

Previous time resolution measurements: Mainly used to obtain statistical contribution Constant term not measured

Requests:

Consumables: 5 kE (LNF)

- Construction of tagger
 - 2 Cerenkov fingers, $\sigma_t < 100 \text{ ps}$
 - Light mechanics for positioning
- Mechanics for prototype support
- MI: 2 kE (NA, sj beam time approval)
 - Participation in beam test

Additional information

CSN1 referee meeting, 24 September 2019

Matthew Moulson INFN Frascati

$K \rightarrow \pi v \bar{v}$: an overview

Extremely rare decays with rates very precisely predicted in SM:

	SM predicted rates*	Experimental status
$K^+ \rightarrow \pi^+ v \bar{v}$	BR = (8.4 ± 1.0) × 10 ⁻¹¹	7 evts from BNL787, 1 evt from NA62 Goal: BR to 10% from NA62 by end of Run 3
$K_L ightarrow \pi^0 u \overline{ u}$	BR = (3.4 ± 0.6) × 10 ⁻¹¹	Only limits at present KOTO (JPARC): ~few SM events by 2021
New physic Measuremer among NP s	s affects <i>K</i> ⁺ and <i>K</i> _{<i>L</i>} differe nts of both can discriminate cenarios	Image: Second state Image: Second st
K_IEVER 5 years	target sensitivity starting Run 4 (2026)	$ \begin{array}{c} \begin{array}{c} \text{arg } \Delta_L \\ = \text{ arg } V_{td} V_{ts}^* \end{array} \\ \begin{array}{c} \text{Buras, Buttazzo, Knegjens} \\ \text{JHEP 1511} \end{array} \\ \begin{array}{c} \text{JHEP 1511} \\ \text{JHEP 1511} \end{array} \end{array} $
60 SM <i>S/B</i> ~ 1	$K_L \rightarrow \pi^0 v \overline{v}$ events	$\begin{array}{c} {\color{black} {\color{blac} {\color{black} {\color{black} {\color{black} {\color{black} {\color{black} {\color{black} $
δBR(<i>K</i>	$T_L \rightarrow \pi^0 v \bar{v}$) ~ 20%	$General NP \propto \frac{ \Delta_L + \Delta_R \times \Delta_L^{w} }{M_{Z^0}^2}$ $BR(K^+ - \times \pi^+ w\bar{w}) \simeq 10^{11}$

Physics sensitivity

K_L**EVER** target sensitivity: 5 years starting Run 4

 $\begin{array}{l} \textbf{60 SM } K_L \rightarrow \pi^0 vv \\ S/B \thicksim 1 \end{array}$

 δ BR/BR($\pi^0 vv$) ~ 20%

60 $K_L \rightarrow \pi^0 vv$ events at SM BR 60 background events Signif. $\approx \frac{S_{obs} - S_{SM}}{\sqrt{S_{obs} + B_{obs}}}$

If BR($K_L \rightarrow \pi^0 v v$) is:

- Suppressed to 0.25 $BR_{SM} \Rightarrow 5\sigma$
- Enhanced to 2 BR_{SM} \Rightarrow 5 σ
- Suppressed to 0.5 $BR_{SM} \Rightarrow 3\sigma$

Effects on $K \to \pi v v$ BRs with constraints from Re ε'/ε , ε_K , Δm_K , $K_L \to \mu \mu$

Model	$\Lambda \ [\text{TeV}]$	Effect on $BR(K^+ \to \pi^+ \nu \bar{\nu})$	Effect on $BR(K_L \to \pi^0 \nu \bar{\nu})$
Leptoquarks, most models	1 - 20	Very large enhancements; mainly ruled out	
Leptoquarks, U_1	1 - 20	+10% to $+60%$	+100% to $+800%$
Vector-like quarks	1 - 10	-90% to $+60%$	-100% to $+30%$
Vector-like quarks $+ Z'$	10	-80% to $+400%$	-100% to $0%$
Simplified modified Z , no tuning	1	-100% to $+80%$	-100% to $-50%$
General modified Z , cancellation to 20%	1	-100% to $+400%$	-100% to $+500%$
SUSY, chargino Z penguin	$4-6 { m TeV}$		-100% to $-40%$
SUSY, gluino Z penguin	$3-5.5~{\rm TeV}$	0% to $+60%$	-20% to $+60%$
SUSY, gluino Z penguin	10	Small effect	0% to $+300%$
SUSY, gluino box, tuning to 10%	1.5 - 3	$\pm 10\%$	$\pm 20\%$
LHT	1	$\pm 20\%$	-10% to $-100%$

Random veto considerations

Linear extrapolation of random veto probability from 2016 analysis

	Random veto efficiency	
	750 MHz	3000 MHz
LAV	85%	55%
LKr	83%	38%
IRC+SAC	92%	75%
Photon veto	64%	15%

Time resolution for all photon vetoes would have to be improved beyond capabilities of current detectors for NA62x4

- Coincidence windows of < 2 ns
- Coincidence time resolution of ~200 ps ($\pm 5\sigma$ for full efficiency)
- Photon veto time resolution < 200 ps

These characteristics are necessary for KLEVER too

Thoughts about LKr calorimeter

Concerns about LKr:

Time resolution

- $\sigma_t = 0.56 \text{ ns} + 1.53/E 0.233/\sqrt{E} \rightarrow 640 \text{ ps for } E \sim 10 \text{ GeV}$
- Non-gaussian tails
 - $\pm 15\sigma$ coincidence windows for 2 < E < 15 GeV ($35 \rightarrow 18$ ns)
 - $\pm 70\sigma$ coincidence windows for E > 15 GeV

Rates of 20 MHz on LKr in NA62x4?

- Naively need 4x better σ_t
- Faster shaping, faster digitizers (cf Riccardo's talk) necessary
 - Will they be enough?

Long-term reliability (1996 \rightarrow 2018 \rightarrow 2030?)

For KLEVER, LKr central bore is not big enough

• Limits beam solid angle to $\Delta \theta < 0.3 \text{ mrad} \rightarrow 40\% \text{ less } K_L \text{ flux}$

Baseline design for KLEVER calls for NA48 LKr to be replaced

Shashlyk MEC: Items to study

Simulation studies:

- Sufficiency of effective transverse segmentation; optimization of cell size
- Optimization of total depth
- Estimate inefficiency from photonuclear interactions
- Material studies:
 - Optimization of scintillator composition: shashlyk tiles, WLS fibers, spy tiles
 - Choice of SiPM: Dimensions of active area, time response, thermal stability, radiation resistance
- Mechanical design studies:
 - Readout scheme for SiPM: redundancy (2 SiPM/module, mixed)
 - Mechanical design for spy-tile fiber channeling
- Effect of channeling through fibers and how to mitigate
- Energy/time resolution and detection efficiency measurements with tagged photon beams:
 - Low energy: Frascati BTF (550 MeV), MAMI (1.6 GeV)
 - Intermediate energy: Protvino (5 GeV), DESY II (6 GeV)
 - High energy: SPS test beam in Run 3

Performance of KOPIO shaslyk

KLEVER requirement

KOPIO performance

Photon eff. 1 – ε_{γ}

Energy (GeV)	$1 - \varepsilon$
< 1	1
$1 \rightarrow 5.5$	$10^{-3} \to 10^{-4}$
$5.5 \rightarrow 7.5$	$10^{-4} \rightarrow 5 \times 10^{-5}$
$7.5 \rightarrow 10$	$5\times10^{-5}\rightarrow10^{-5}$
$10 \rightarrow 15$	8×10^{-6}
> 15	4×10^{-6}

Spec: $\leq 10^{-4}$, 50-1000 MeV Ach: ~ 5×10⁻⁵, 250 MeV Dominated by punch through Photonuclear not included

Energy res.

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E} \text{ (GeV)}} \oplus \frac{9\%}{E} \oplus 0.42\%$$

 $\frac{\sigma_E}{E} = \frac{2.7\%}{\sqrt{E} \text{ (GeV)}} \oplus 2\%$

Time res.

 $\sigma_t < 150 \text{ ps}$

 $\sigma_t \sim 72 \text{ ps}/\sqrt{E} \text{ (GeV)}$

2-cluster sep.

Clust. resolved if d < 6 cm LKr Molière radius = 6 cm LKr cell size = 2 cm

Molière radius = 6 cm Cell size = 5.5 cm

Calorimeter readout system

Development of free-running, fully digitizing readout system for acquisition at 100 MHz, with low-level event selection in front end:

- Versatile analog front-end stage:
 - Configurable signal shaping/amplification for different detectors
- Digital front-end stage:
 - FADC digitization at up to 1 GHz; zero suppression; time framing
 - Parallel signal processing/data filtering implemented on FPGAs or ASICs
 - Autonomous trigger generation
 - High radiation tolerance (single-event-upset resistant)

Readout/data transmission stage

- Trigger and clock distribution
- Merging of channels and trigger information; additional signal processing as needed
- Data transmission via standard network protocol.
- Networking and online computing architectures with model for dataflow from readout boards to permanent storage