Pixel Endcap Type-I Services Mockup

Status of setups

Plans for testing

Pixel Endcap Integration Workshop, 18.03.2020

Stephan Eisenhardt Owen Shea University of Edinburgh

Single Half Ring Mock Up

20cm AI L2 half cylinder & AI L2 half rings

- mounting points for half rings & dummy modules
- components to play with:
 - 3D-printed: ends of half rings, modules, ... ٠
 - dummy modules with data pigtails
 - Mock data cable end with data pigtail •
 - Type-I cables: only MOPS com still missing... •
 - CF shell to play with still at Liverpool...

Mock data cable end (made last week): 13x Twinax bundle glued to prototype data pigtail

3D-printed half ring end

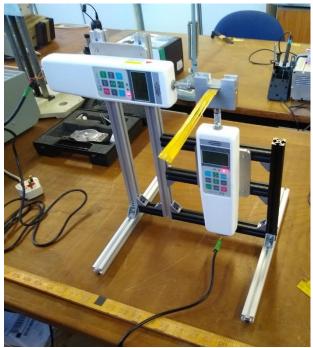
Data pigtail & dummy module

Pixel Endcap Integration Workshop, 18.03.2020

Stephan Eisenhardt

60cm Half Ring Mock Up

- □ Al-frame (currently supporting >90° rotation, can be extended e.g. to 270°):
 - cradle with modular frame on Teflon gliders
 - can mount L2, L3, L4 60cm models, individually or simultaneously, via AI mounting lugs
 - currently mounted:
 - L2 sheet metal half cylinder with POM end flange
 - first sheet-rolled L2 half-cylinder had 1mm bow
 - \rightarrow currently being redone


Pixel Endcap Integration Workshop, 18.03.2020

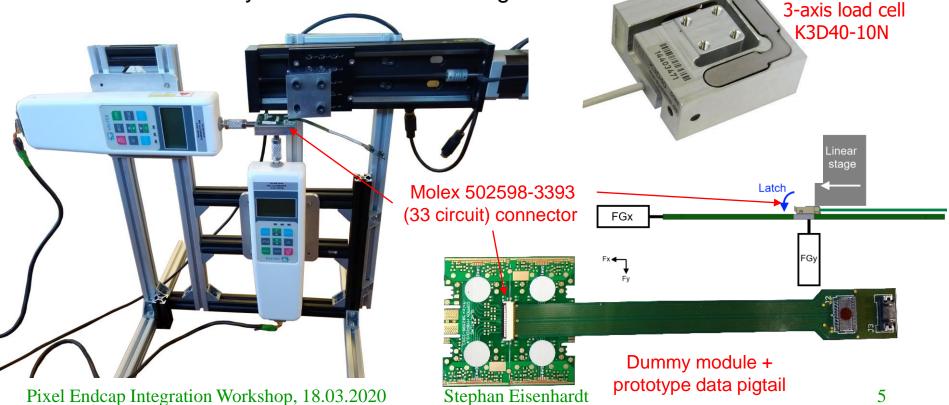
Stephan Eisenhardt

Force Measurement Setups

- Cable bending tester:
 - x-y-mount of two force gauges with simultaneous readout
 - custom adapters, dedicated for each cable bundle type
 - to study forces on cable bundles for cable routing scenarios & cable bundle types if you:
 - bend
 - twist
 - turn
 - plastic bending standards (e.g. various radii)
 - 2x Sauter FH-5 force gauges:
 - range: 0-5N
 - resolution: 0.001N
 - up to 2000 samples/s
 - RS232 readout
 - Edinburgh readout software (by Chloe)

Cable bending force measurement system

Pixel Endcap Integration Workshop, 18.03.2020


Stephan Eisenhardt

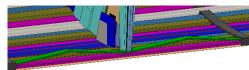
Force Measurement Setups

- Connector latch force tester:
 - 2x Sauter FH-5 force gauges + Zaber T-LSR150B motorised linear stage(s) :

on order - Interface:

- controlled, repeatable connector latch operation & x-y force measurement
- issue: entanglement of x-&y-channel leads difficult to calibrate residuals
 - \rightarrow ordered x-y-z-load cell to disentangle:

Services Mock-up & Cable Routing


□ Status & progress:

- design, setup & production of test jigs in progress
 - available: preliminary layer 2 jigs
 - available: mock layer 2 half-ring & 3D-printed half-ring ends with modules & piping
 - available: new forge gauges
- questions answered:
 - design to build mock-up enabling rotation in $\boldsymbol{\phi}$
 - design to build test jig for quantitative force test on cable bundle samples

Services Mock-up & Cable Routing

Status & progress:

- questions open:
 - trial & document behaviour of routing cable bundles (turning, twisting, side-shifting & stacking)
 - trial cable mount/fixation options
 - trial CTE compliance strategy ('wavy' routing of cable bundles)
 - trial data cable bundle building strategy (fusing only every few O(10cm), leaving freedom to bend)
 - trial cable stripping & connector mounting
 - check cable bundle fitting for layer 2, ring 10 (densest population of cables)
 - data pigtail to module mounting:
 - connector orientation: to high-r (direct routing) or to low-r (loop-back routing)
 - when: at module production, after module mounting or after half-ring integration
 - trial & compare mating action under various mock conditions
 - tooling & test interfaces needed
 - study region of overlap of two half-rings (services routing & possible conflicts)
 - develop strategy for production jigging for Type-I services
 - develop labelling/colour scheme for bookkeeping
- time scale for results:
 - for discussion: what is depending on input from these tests, and when?

detail of L2 cable routing option: with clamps & excess cable to address CTE

Mock Up Test Programme

Non-data Type-I cables:

- insulator: Polyimide vs PEEK
- conductor: single- vs multi-stranded
- conductor: copper vs TPC
- cable: single vs already twisted
- cable:
- cable bundle:

bending radii vs force & vs spring-back
 CTE & cable bulging, routing stability / Ø connector mounting / tinning procedure reliable TWP manufacture from single cables insulator stripping (chemical/mechanical) routing & fixation

- unsolved: how to build shielded AWG 32 ... try to gain understanding to enable manuf.

Data Type-I cables (twinax):

- cable:
- cable bundle:
- cable bundle:
- pack of cable bundles:
- pack of cable bundles:
- pack of cable bundles:

bending forces / material fatigue building bundles of 5 / 9(?) / 13 twinax cables bending properties, stiffness, spring-back, ... turning options 90° bend / sideway shift trial of looming options (inside/outside bulkhead) fixation options, with slip/bulge for CTE

- Schedule:
 - target dates to work towards:

 all Services PDR: 	25.10.2019
 all Services FDR: 	04.06.2021
 all Services PRR: 	08.07.2022

• Endcap:

•	Type-1 non-data cables – preliminary design:	15.04.2019	- 05.07.2019
•	Type-1 non-data cables – design & prototyping:	28.10.2019	- 10.04.2020
•	Type-1 non-data cables – test of prototypes:	23.12.2019	- 14.02.2020
•	Type-1 non-data cable bundle – design & prototyping:		23.04.2020 - 25.09.2020
•	Type-1 non-data cable bundle – prototypes during desi	gn phase:	08.06.2020 - 28.08.2020
•	Type-1 non-data cable bundle – prototype testing:		31.08.2020 - 23.10.2020
•	Endcap Type-1 cable bundle pre-production & QA:	21.06.2021	- 27.08.2021
•	Endcap Type-1 cable bundle production:	11.07.2022	- 23.12.2022
•	Endcap Type-1 cable bundle QC tests:	26.12.2022	- 04.08.2023

- Endcap Type-0 production: 13.03.2020 12.05.2023
- Endcap EoS production:

Pixel Fest, Edinburgh, 27.06.2019

•

Stephan Eisenhardt

20.04.2020 - 05.05.2023

- □ Issues identified at 01.05.2019 Mock-up workshop:
 - corrections to Fred's cable model:
 - non-data cable multiplicities & cross-section allocation
 - most critical location: bypass of services for rings R0-R9 at L2 ring R10
 - highest number of data links & lowest available cross-section
 - filling factor ~100%, maybe even beyond...
 - identified suggestions to mitigate this
 - data cable assembly: no space for mating action blocked by cables from lower-z rings
 - discussed alternative layouts: a) turn connector by 180°, b) take connector off ring surface (w. flex)
 - see spare slides: "Issue with Assembly of Data cables" for discussion & "Data EoS Interface" for illustration

- Aims / questions to answer:
 - CAD validation:
 - gain experience in handling bundles of cable: study bending radii, side-way shifting, spring-back, ...
 - are the packing factors realistic & which envelopes do we have to use at turns/side-way shifts?
 - cable harness topology:
 - multiplicity and accuracy of different cable bundles needed
 - (how) can we split into manageable sub-assemblies/harnesses?
 - services routing between end-flange & PP1 to patch EC to PP1 connector assignment
 - assembly of cable harnesses:
 - which production & assembly steps to be out-sourced to industry
 - jigging & tooling
 - transition from 2D to 3D assembly
 - order of assembly on 3D jig
 - fixation of cable harness:
 - on assembly jig
 - in CF half-shell
 - slack needed to account for differences in CTE (carbon fibre vs. cables, +20...-35°C or +60...-55°C)

- ...

- Aims / questions to answer: (cont'd)
 - installation in CF shell:
 - installation order (services & half-rings)
 - connector mating/de-mating (needed space & tooling)
 - connection procedure (must be practical and safe, e.g. securing floppy connector ends...)
 - jigging/support for cables outside heavy flange:
 - for services: assembly, mounting in 3D, transport, transfer to CF half-shells, during system tests
 - assembled EC shells: transport to CERN, integration into ATLAS, mounting to PP1

- Next practical steps:
 - 60cm half-shells at Liverpool & Edinburgh
 - Tim suggested: CFRP outer & middle layer and Al inner layer
 - decide on location: inner to Edi? \rightarrow study most crowded feed-through at L2 R10
 - acrylic flanges & dummy half-rings (2 per layer), plastic ring mounts
 - make in Uni workshops
 - dummy EoS & PP1 interfaces
 - using preliminary / trial connector choices
 - cables:
 - order non-data cables
 - get data cables from US partners
 - connectors:
 - get samples & trial cabling up
 - cable mount design options:
 - trial different approaches (e.g. could use 3D printed prototypes to try arbitrary concepts)
- □ Think about / plan for:
 - jigging concepts & options for cable harness assembly
 - implications for transport & integration into half-shells
- options for harness support outside end-flange
 Pixel Fest, Edinburgh, 27.06.2019
 Stephan Eisenhardt

