GSI biophysics seminar 15 Dec 2009

The FIRST experiment on fragmentation of high-energy heavy ions of biomedical interest at GSI

> Vincenzo Patera University of Rome and LNF-INFN (Italy)

Outline

- Motivation
- The Collaboration
- Experimental setup
- Eventual future evolutions
- Summary & conclusion

Hadrontherapy and light ions

Light ions advantages in radiation treatments :

- Better Spatial selectivity in dose deposition: Bragg Peak
- Reduced lateral and longitudinal diffusion
- High Conformal dose deposition
- High Biological effectiveness

Treatment of highly radiation resistent tumours, sparing surrounding OAR

CARBON IONS ADVANTAGES

- Lower lateral and longitudinal diffusion vs. proton
 More precise energy deposition
- Optimal RBE profile vs penetration depth position.
- Online PET for depth deposition monitoring
- Good Compromise between RBE and OER.

WATCH OUT!! RBE related problems & features will not be discussed in this talk!!!

DISADVANTAGE OF CARBON IONS

Nuclear Fragmentation of ¹²C beam in the interaction with energy degraders and/or biological tissues

- Production of fragments with higher range vs primary ions
- Production of fragment with different direction vs primary ions

- Mitigation and attenuation of the primary beam
- Poblems due to different biological effectiveness of the fragments

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008

Courtesy of Andrea Mairani

DISADVANTAGE OF CARBON IONS

The secondary fragments, especially the lighter ones such H and He, broad the lateral dose profile. Effect gets more and more important approaching, and going beyond, the Bragg Peak i.e. the tumor region

Data: S. Brons & K. Parodi (GSI) MC-FLUKA: A. Mairani PhD Thesis 2007 Pavia

Courtesy of Andrea Mairani

What should we know to take care of fragmentation?

- Production yelds of Z=0,1,2,3,4,5 fragments
- × $d^{2}\sigma/d\theta dE$ = double diff. cross sections wrt angle and energy
- ★ For ¹²C energy of interest for Hadrontherapy (100-200 MeV/nucl)
- × On thin target of different materials on the ¹²C path to the tumor

Not possible from measurement only We need a nuclear interaction model !!

Fragmentation, TPS, MonteCarlo and all that..

The nuclear interaction description are embedded in the Treatment Planning System through a "physical" DB generated on the basis of a Interaction Model (by analytical computation or MC code) where the energy releases and the fragment produced by the beam are stored. Thus the benchmarking of the MC with the measurements are getting more and more important due to:

- Better representation of the nuclear interaction model wrt analytic calculation
- Natural and easy 3D treatment of physics processes
- More accurate patient representation wrt w.e. approach
- Possibility of exploiting PET online
- Easily taken into account the beam features

CPU time prevents the use of TPS entirely based on MC in hadrontherapy clinical routine

A (over) simplified scheme of a Treatment Planning System

Yellow = (can be) MC based

MC for TPS: what is on the market?

The list is absolutely not exaustive

- EGS4, EGSnrc, ETRAN, PENELOPE: electron and photon
- MCNP: only electron, photon and neutron
- VMCpro, ISTAR, MCNPX: only for proton. parametrised nuclear int
- Geant4 , PHITS, FLUKA : general purpose, transport any particle from photon to heavy ion → suitable for ¹²C beam
- Geant4 : very large user community, optimised version for low energy, OO, flexible
- We will use FLUKA as reference code: very accurate physics description, old style coding (FORTRAN).

MC for physicist is like religion or favorite soccer team: you do not choose it, you are chosen by it, and once you are chosen, no way to change it !! (see the G4 vs FLUKA religion war...)

MC for TPS (MCTP): very popular (trendy?) ..!

In the period 2000-2007 there has been an exponential growth of the MCTP related papers (source: ISI Web Science)

Frag	meas	s: thick 1	arget	A lot of integral measurements
Project	tile Ene	rgy[MeV/N]	Farget	measurements are
4 H o	100 180	C AL Cu P	h	aneady around
12 C	100, 100	$\begin{array}{c} \mathbf{C}, \mathbf{M}, \mathbf{C}\mathbf{u}, \mathbf{I} \\ \mathbf{M}, \mathbf{C}\mathbf{u}, \mathbf{I} \\ \mathbf{M}, \mathbf{C}\mathbf{u}, \mathbf{I} \\ \mathbf{M}, \mathbf{U}, \mathbf{U}, \mathbf{U} \\ \mathbf{M}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U} \\ \mathbf{M}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U} \\ \mathbf{M}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U} \\ \mathbf{M}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U}, \mathbf{U} \\ \mathbf{M}, \mathbf{U}, \mathbf{U},$	h	
²⁰ Ne	100, 180,	400 C. Al. Cu. P	b	
²⁸ Si	800	C. Al. Cu. Ph	~ HIMAC by Kurosaw	a et al.
⁴⁰ Ar	400	C. Al. Cu. Ph		
⁵⁶ Fe	400	C. Al. Cu. Pb		
¹²⁶ Xe	400	C. Al. Cu. Pb		
²⁰ Ne	337	C, A, Cu and U	BEVALAC by Schimmer	·ling et al.
⁹³ Nb	272	Al. Nb	BEVALAC by Heilbronn e	et al.
⁹³ Nb	435	Nb		
⁴ He	155	Al	NSRL by Heilbronn et al.	
¹² C	155	Nb		
				Tentative &
⁴ He	160	Pb	SREL by Cecil	in a small stall ist
⁴ He	180	$C, H_2O, steel, Pb$		incomplete list
120	200		CSI by Cünzent Meny et al	
	200	H ₂ U	GSI by Gunzert-Marx et al.	
¹² C	400	Н.О	GSI by Haettner et al	
				Courtesy of M. Durante
				Courtery of the Durante

Fr	ag meas	: thin	A lot of measurements on thin target are already around but not wrt angle and energy		
Projectile	e Energy[M	[eV/N]			
		C, Poly, Al,	Cu, Pb		
		C, Poly, Al,	Cu, Pb	RIKEN by Sato et a	l.
		C, Pol	y, Al, Cu, Pb		
⁴⁰ Ar	95	C, Poly	y, Al, Cu, Pb		
^{12}C	290, 400	C, Cu	, Pb		
²⁰ Ne	400, 600	C, Cu	, Pb	HIMAC Iwata	et al.
⁴⁰ Ar	400, 560	C, Cu	, Pb		
					Tentative &
⁴ He	230	Li, C, Cl	H ₂ , Al, Cu, Pb		incomplete list
$^{14}\mathbf{N}$	400	Li, C, Cl	H ₂ , Al, Cu, Pb	· · · · · ·	
²⁸ Si	600	Li, C, Cl	H ₂ , Al, Cu, Pb	HIMAC Heilb	ronn et al.
⁵⁶ Fe	500	Li, C, Cl	H ₂ , Al, Cu, Pb		
⁸⁶ Kr	400	Li, C, Cl	H ₂ , Al, Cu, Pb		
¹²⁶ Xe	400	Li, C, Cl	H ₂ , Al, Cu, Pb		

Courtesy of M. Durante

only with detectors at 0°!

Mixed Radiation Field in Carbon Ion Therapy

FLUKA benchmark against thick target experimental data

Attenuation of primary beam Build-up of secondary fragments 0.8 Exp. Data (STARS) Å **FLUKA (POINTS - LINE)** 0.7 싞 0.6 R Yield (0-10°) 0 0 N_c/N_o ¹²C 0.3 0.2 0.1 0.2 <mark></mark>⊔ 250 200 300 50 100 150 50 350 100 150 200 250 300 Depth [mm] Depth [mm]

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, PMB *to be published*

Courtesy of Andrea Mairani

Mixed Radiation Field in Carbon Ion Therapy

Angular distribution

FLUKA benchmark against thick target experimental data

¹²C (400 MeV/u) on water

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, PMB *to be published*

Courtesy of Andrea Mairani

Benchmarking MC nuclear interaction model on thick target: FLUKA & G4

Charge-changing X-sections for C on polycarbonate

exp. data: Toshito et al. 2006

Courtesy of T.Boehlen

The FIRST collaboration

INFN: Cagliari, LNF, LNS, Milano, Roma2, Torino: <u>G.Cuttone</u>, C.Agodi, G.Battistoni, M.Carpinelli, G.A.P.Cirrone, M.De Napoli, E.Iarocci, A.Mairani, V.Monaco, M.C.Morone, A.Paoloni, V.Patera, G.Raciti, E.Rapisarda, F.Romano, R.Sacchi, P.Sala, A.Sarti, A.Sciubba, C.Sfienti,

DSM/IRFU/SPhN CEA Saclay, IN2P3 Caen, Strasbourg, Lyon: <u>S.Leray</u>, M.D.Salsac, A.Boudard, J.E. Ducret, M. Labalme, F. Haas, C.Ray

GSI: M.Durante, D.Schardt, R.Pleskac, T.Aumann, C.Scheidenberger, A.Kelic, M.V.Ricciardi, K.Boretzky, M.Heil, H.Simon, M.Winkler

ESA: P.Nieminem, G.Santin

CERN: T.Bohlen

FIRST stands for: Fragmentation of Ions Relevants for Space and Therapy 5371 is the GSI label for us

The FIRST experiment: aim and genesis

Target: Double differential cross section (with respect to the emission θ and E) for each of the produced fragments in C-C, C-Au (Fe-C, Fe-Si, O-C) interaction, with 3% accuracy.

✓ 16 Dic. 2008 - Colloquium al GSI:

Light Ion Fragmentation Measurements for Medical and Space Applications

✓ 29 Gen. 2009: Proposal to G-PAC:

Extensive study of nuclear reactions of interest for medical and space applications

✓ 27 Feb. 2009: approval by G-PAC for C-C:

beam in early 2011

Beam time: requested....

•Control of setup beam •C+C @ 0.2, 0.4 and 1.0 AGeV 6 days •C+Au @ 0.2, 0.4 •O+C @ 0.2, 0.4 •Fe+Si @ 0.5 and 1.0 AGeV •Fe+C (a) 1.0 AGeV 2 days Calibration Da: Paolo Giubellino <giubell@to.infn.it> 2 days Date: 27 febbraio 2009 16.49 Oggetto: gpac A: giacomo cuttone <cuttone@lns.infn.it>, agodi@lns.infn.it Cc: m.durante@gsi.de Cari amici. sono lieto di confermarvi l'assegnazione di 33 shifts per fare le misure rilevanti per l'adroterapia. Buon lavoro! A presto, ciao, Paolo Paolo Giubellino

1 day per period of

4 days 4 days 4 days

ALICE deputy spokesperson 39-011-670 7356

The IDEAL detector

On an event by event basis, the ideal detector should:

- Identify all the fragment produced, i.e. detect charge , with 0 < Z < 6 and detect mass, on all the solid angle</p>
- Detect the energy of the fragments (from 0 to 700 MeV p)
- Measure the emission angle
- Detect all the correlations, with systematic below few %
- Be located on a suitable beam (¹²C @200-400 MeV/nucl)

Starting from scratch, such a detector would be VERY, VERY expensive (several M€), would take LONG, LONG time and a VERY LARGE group to design and build it.

FIRST: where and what ...?

At GSI there are the proper beam and a previous setup that has been designed for a similar (but not the same) physics. We will improve, adapt and optimize the ALADIN experimental setup for our goal

Have you ever played with LEGO?

Setup tailored for more energetic and higher Z fragments → added new sub-detectors mainly concentrated near the IR : Silicon hodoscope, Start Counter, Beam Monitor, Vertex Detector (& CALO?)

Land2

To extract Ζ, Α, θ_{emiss}, p_{emiss} the reconstruction must exploit all the setup information

> **CALO** \rightarrow Large angle p LAND2 \rightarrow neutron flux

What we expect: MC studies

We use FLUKA as benchmark MC for our studies: the MC distribution can be used as "rule of thumb" indicator useful mostly to optimize the detector for critical items as:

- Space and time resolution
- Detector occupancy
- Particle ID
- Trigger design
- Background and out of target interactions evaluation
- Reconstruction software development

Expected fragment yield

As bench mark we considered the interaction of a 400 Mev/nucl Carbon ion on a 5mm thick Carbon target. 5% of the primary carbons interact in the target

The fragment production are dominated by Protons and Neutrons. They are 1 order of magnitude more than the other fragments!!

The events have small multiplicity (total ~ 13, charged ~ 8)

MC: fragment energy

- The Z>2 produced fragments approximately have the same velocity of the C ion projectiles
- The proton have a very wide spectrum with 0<β<0.6
- The DE/DX released by the fragment spans from ~2 to ~100 m.i.p.

MC: Angular distributions

- The Z>2 fragment are well collimated in the angular acceptance of the ALADIN magnet
- The Z=2 fragment can be recovered by the Si Hodoscope
- The protons are emitted mostly at large angle, out of the acceptance of the existing setup →must be recovered by new IR

Produced p and He: angle vs energy

Hydrogen yield double-differential, N_{prod H}/N_{prim C} [1/(sr \times MeV/n)]

400 MeV/nucl ¹²C on ¹²C

WATCH OUT!! How much is FLUKA reliable?

Some other boundary conditions

- Out of target interactions must be kept below ~ per cent level with respect to an target interactions.
- Trigger rate must be ≤ kHz due to pile-up in the MUSIC TPC (10% pile-up @4kHz)
- Considering a maximum target thickness of 10 mm, we expect at maximum ~10% of interaction probability.
- The beam spot for Carbon projectiles can be ~ 3mm FWHM
- The geometric acceptance of the ALADIN magnet for the produced fragments is ~4° in θ and ~9° in ϕ

The Interaction Region

Brand new component. All components must operate in vacuum and must have very limited material budget to reduce as much as possible the out of target interactions

- Gives the start to Time Of Flight measurement. Should match the stop (TOF WALL) time resolution (~200ps)
- Measures the beam direction & impact point on target event by event.
- Host the target system. Remotely controlled system that embed different thin (~few mm) targets
- > Tracks the fragments just downstream of the target.
- Detects the particle escaping from the magnet acceptance

New target region

A) Start counter. Thin and fast scintillation detector. Gives the start to TOF measurement.

B) Beam monitor. Drift chamberthat measures the beam impactpoint on target.

C) Target system. Remotely controlled system that embed different thin (~few mm) targets D) Vertex Si telescope: tracks the fragments just downstream of the target. Measures the emission angle with the requested precision and detects out of target interactions

E) One arm Lead-fiber calorimeter covering wide θ angular region in a narrow ϕ range (yet to be approved)

The start counter

Provides the START to the TOF measurement and to the TRIGGER. "Stardard" plastic scintillator but with peculiar features to fulfill the TOF requirements:

•At most 200 μ m thickness to avoid interactions (2-3% of the target thickness)

•Must integrate enough light to have O(200-300ps) of time resolution. A ^{12}C @300 MeV releases in 200 μ m as much as one mip in 5 mm, Birks saturation included.

Prototype with fiber built and tested @ 62MeV/nucl carbon beam in LNS. No cosmic, β sources or X sources can be used to test it in lab, only α particle

Timing performances

Fast (~250ps/J(p.e.)) and high q.e. (~40%) brand new Hamamatsu photomultipliers H10721-210

Wrapped with thin aluminum-mylar envelope \rightarrow 2 x 2,1µm aluminized mylar windows Ready

short signals: 5 mV vs 1 ns

~300 ps sigma with large tails → bad S/N (10 mV/5 mV r.m.s) due to grounding and small amplitude

100 um EJ228 (P<u>ilot U) 390 nm</u>

The Beam Monitor

TRacks the carbon beam. Gives the impact point on target and the primary carbon direction: crucial to spot out of target interaction and to recover events with double primary carbons. Tested at LNS 62MeV/nucl ¹²C beam

Drift chamber with exgonal shape cells

4 planes in the y and x direction

- \rightarrow Wire thickeness: 90 μ m field 30 μ m sense
- → O(100 µm) single hit resolution with mip \rightarrow O(100-50 µm) impact point resolution on target with ¹²C
- Operation with carbon @ 300MeV/nucl ? Proportional vs quasi-proportional?
- Target mixture: P10 (AR-Ethane) but can operate both with Ar-CO2 (safety!)

The Beam monitor

Beam Monitor @ 62Mev/nucl ¹²C beam

Residuals (cm)

mixture knowledge)

B.M. Resolution & Efficiency

preliminary

Constraints on vertex detector

- ✓ The Carbon beam spot has a FWHM = $3mm \rightarrow The$ active size must be at least in the range of cm^2
- The angular acceptance must be as large as possible to track the protons emitted at large angles (>40°)
- The angular resolution on track must be ~ 0.3 deg to match the requirement for the therapy (1 CT voxel resolution after 15 cm of path) and to spot if the fragmentation vertex is outside the target
- Dinamic range should deal with signals ranging from 2 to 100 m.i.p. with good efficiency (>98-97%)
- ✓ If we consider 3 station then thickness must be less than 100 µm for each station, accounting for some % of the target thickness (N.B. Carbon interaction in vertex cannot be detected → directly contribute to systematic!!)

The MIMOSA26 detector

- Active surface :1152 columns of 576 pixels (21.2x10.6mm²)
- Pitch: 18.4 μ m \rightarrow 0.7 Mpixel $\rightarrow \sigma_{_{\rm sp}}$ ~5 μ m
- Digital readout at 10 Khz rate

- On chip electronic to process the signal in few μm layer
- Zero suppression on board
- Can be thinned at 50-60 μm

Vertex detector : setup geometry

The shown setup, (6 MAPS in 3 planes) could give large angular acceptance and 0.4^o angular resolution even with clusters of pixels detectd with 50 µm spatial resolution

Only ~15% of the proton angular distribution is out of acceptance of the Vertex (3 planes). Only few % asking 1 plane + calorimeter Proton energy coarsely measured by the lead-fiber

calorimeter

MIMOSA26: response to light ions

The MIMOSA chip shows a correlation between the energy deposit and the cluster size: can improve ion identification.

Response to light ions (cluster size, eff,..) foreseen to be studied at LNS ¹²C beam

Can be tested also with α from Am241 source but...

Energy release by Am241 is larger than by 200 MeV/nucl carbon \rightarrow carbon has smaller cluster size

Am241 event in MIMOROMA, same MAPS technology of MIMOSA26

I.R. Calorimeter

- Needed to detect the large angle fragment escaping from the HODO and ALADIN acceptance (mainly protons)
- Yet to be approved, but INFN institution already at work
- A possibility would be a leadfiber calorimeter with reduced aperture in φ to save FEE (and MONEY!)
- Proton-deuteron-tritium ID possible by TOF
- Coarse tracking and sufficient Energy resolution for low energy proton

The Large angle Hodoscope

89 three-fold telescopes 50 μ m + 300 μ m Silicon detectors both having 3x3 cm² surface followed by a 6 cm long CsI(Tl)of the same surface.

 Acceptance O_{ld} between ±4.5° and ±20°, tracks not entering in MUSIC, mainly p & He

* Measure dE/dx, E, θ , ϕ

The Downstream Tracking: Aladin + Music

Downstream the IR we have Aladin, a large area dipole magnet, coupled with the large volume MUSIC IV TPC. The combination provides info on:

• Fragment tracks after bending \rightarrow R=p/ (ZeB)

Large dinamic range needed (2-100 m.i.p signal)

Maximum track rate due to long drift time (\sim 100 μ s) of ionization electrons: O(1-2 KHz)

Full geometrical acceptance for frags Z>2, fair for He, poor for protons

The TPC-MUSIC IV

Space reconstruction:

- Drift time \rightarrow x coord
- Charge division and pad readout of the counters \rightarrow y and z coord

The beam is along the z coord

The MUSIC IV - TPC

- Must be tuned for low Z fragments →reduce the dinamic range
- Fragment directions measured must be bactraced along some meters to IP

The TOF WALL

- Gives arrival time and impinging position of the fragments
- Time resolution be matched by resolution of start counter
- $\beta = L(p,Z,\theta,\phi)/TOF$ The time performance must be matched by the tracking capabilities of the setup

The TOF WALL

• Two detector layers (front and back), each made of 12 modules

Each module made of 8 plastic scintillators (BC408), 1.10 m long, 2.5cm wide and 1 cm thick

- Read Q & t at both sides of the slabs
- coord along slat from Q1/Q2
- Time resolution O(200) ps on carbon, worst on lighter frags

TOF-WALL performances

- TOF vs Q analysis provides standalone Z separation power
- Frag ID power fully exploited with MUSIC info
 - Dinamic range to be optimized for low Z frags

M.De Napoli: PhD Thesis 2005

LAND, the neutron detector

- Active volume: 2x2x1 m³
- Divided in 200 paddles 200x10x10 cm3.
- Each paddle made of 11 sheet of iron ad 10 sheet of scintillator 5 mm thick
- Veto in front of the detector for charged particle

LAND, the neutron detector

Reduced angular acceptance: is it enough to test the model? The IR calo could help the neutron flux measurement

Eff ~ 90% for 300 MeV neutron

Time res ~ 500 ps

There is more than that...

- DAQ, FEE, TRIGGER, Calibrations.. anything can induce systematic errors on the measure (es: dead time, pile up, alignment, stability of det. response)
- Reconstruction software: a lot of hw data must be processed and combined
 - Tracking: MUSIC, Bmon, Vertex
 - Clustering: TofWall, vertex, Calo, Hodoscope
- Detector simulation is a central part of the analysis: detector efficiencies & geometrical acceptance (and correlations!!) can be taken into account only by MC

Future... i.e. After 2011 !!!

There is a widespread interest in light ions fragmentation measurement, es: 'Li (April 2010) and ¹⁶O (second half of 2010) at GSI or ¹⁷He + ¹²C (thin target) @ 45 e 85 MeV/nucl at iThemba (proposal in prep.)

The FIRST detector is be able to measure the Fragmentation also with ions like Helium, Litium or Oxigen → GSI interest will be crucial for backing up these measures

The experimental setup is also designed to measure fragmentation cross section also with heavier ions like Fe @ 1Gev/nucl \rightarrow would be interesting for radio protetion in space. ESA and NASA are also interested in this measures

Summary & conclusions

- ✓ An international collaboration (France, Germany, Italy) has been created to measure the $d^2\sigma/d\theta dE$ fragmentation cross section for hadrontherapy at GSI
- The detector will be the evolution of a pre-existing setup, optimized for the detection of the Z<6 fragment with large angular acceptance and accuracy at the few % level
- Data taking is foreseen for spring (I would bet summer..)
 2011
- The experimental setup can be seen as a facility to measure the fragmentation of light ions (He, Li, O projectiles on different target of interest) and for fragmentation measurement of interest for space radioprotection (mainly Fe projectiles)

Spare slides

Energy loss of charged particles

Energy Loss of lons in Matter

Energy loss of ions in matter as a function of their energy

Events multiplicity in Vertex tracker

Non interacting

More than 9 events out of 10 are single C tracks

The event multiplicity produced in vertex detector seems to be quite flat up to Ntrack=7.

However the distance between these tracks seems to be quite large: order ~ mm at 1 cm distance from the target

Charged track distance at 1 cm (mm)

The TP-MUSIC Performances

Treat Planning System: a complex object

- All the pro's and contra of the ¹²C beams must be taken into account in the TPS
- All the knowledge of fragmentation must be inserted in TPS
- The use of MC can be a very effective way to implement the available info and knowledge into the TPS

- Patient modelling
- Transport and interactions of the ions
- Beam & beam line modeling
- RBE computation for the ions, the energies and cell lines of interest
- Optimization procedure (Kernel)
- Monitor & validation tools

Aspects contributing to the complexity of Treatment Planning in hadron therapy

- Management of interfaces/corrections
- Nuclear composition of materials

Relevant technical aspects

- Integration with local beam delivery systems
- Need for "fast" calculation; possibility of producing alternative plans in due time
- Production of general and flexible analysis tools for the inspection of isodose curves on CT scans and Dose-Volume histograms (DHV), etc
 Exploitable benefits
 - Production of active nuclides, particle emission
 - \rightarrow possibility of in-beam monitoring
 - \rightarrow possibility of feed-back correction to Planning

Primary Particles - LNBL fragmentation / charge changing cross section data base

Targets: H, C, Al, Cu, Sn and Pb

lon	Energy (MeV/nucleon)							
⁵⁶ Fe	400	500	600	800	1,000	3,000	5,000	10,000
⁴⁸ Ті					1,000			
⁴⁰ Ar	290	400	650					
²⁸ Si	290	400	600	800	1,200	3,000	5,000	10,000
²⁰ Ne	290	400	600				ata	
¹⁶ 0	290	400	600		1,000			
¹⁴ N	290	400			1:1	inar		
¹² C	290	400			Pretti	3,000	5,000	10,000
⁴ H ^e	230							

Courtesy of M. Durante

FLUKA vs TRip

Mairani et al 2008 Nuclear Science Symposium Conference Record 5612-5615

Benchmarking MC: total cross section

✓ Good agreement with previous experimental data

✓ Discrepancy of about 10% and 20% with model

Toshito. et al., Phys. Rev. C., 2008

Benchmarking MC: Emulsion Cloud Chamber

Density grain is proportional to energy loss

High spatial resolution (~µm)
 High angular resolution (~0.5 mrad)

Multiparticle separation

Refreshing method to extend dynamic range

Toshito. et al., Phys. Rev. C., 2008

MIMOSA26: response to light ions

The MIMOSA chip shows a correlation between the energy deposit and the cluster size: can improve ion identification, but...

the increased cluster size could produce track overlaps due to the short lever arm between target and vertex layers

With the proposed setup only 0.3% of track pairs has separation < 100 μ m in the first Si plane (the most critical)

MIMOSA26: response to light ions

Response to light ions foreseen to be studied at LNS ¹²C beam but can be tested also with α from Am241 source (already done for mimoroma, same MAPS technology of MIMOSA26).

Energy release by Am241 is much larger than carbon \rightarrow carbon has much smaller cluster size

Am241 event in MIMOROMA

