

FIRST

Fragmentation of lons Relevant for Space and Therapy

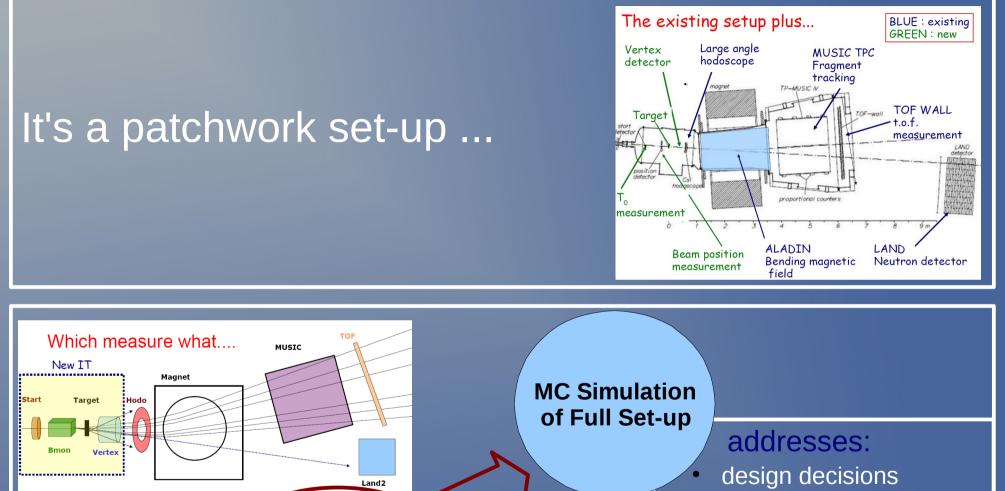
Monte Carlo Simulation of the Full Experimental Set-up

Introduction, Status Report, and First Studies

Till Böhlen (CERN, PhD student) Vincenzo Patera (ROMA1, LNF) Cristina Morone (ROMA2)

Contact: Till.Tobias.Boehlen@cern.ch

FIRST Collab. Meeting



Scope of the Simulation and Objectives Structure and Status of Implementation Primary Interactions and Production Yields TOF-Wall study

Conclusion and Outlook

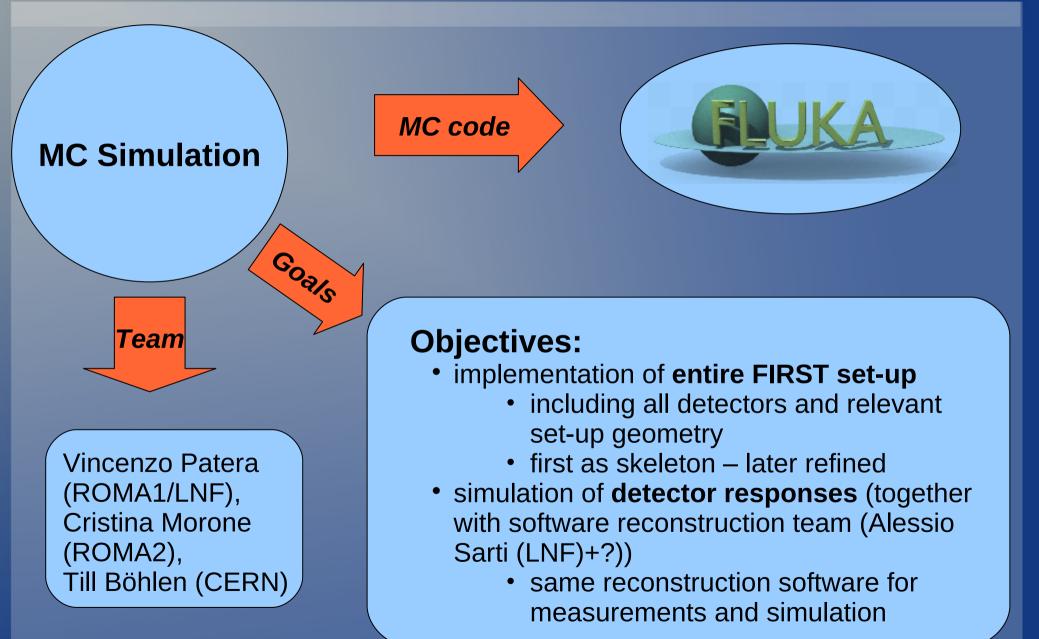
Scope and Objectives

 $\begin{array}{l} \text{MUSIC} \rightarrow Z/p \ , \theta, \phi \ \text{after bending} \\ \text{MUSIC} \rightarrow \text{Energy loss } \propto (Z/\beta)^2 \\ \text{Hodo} \rightarrow \text{Large angle fragment energy}, \theta, \phi \\ \text{Vertex} \rightarrow \text{Fragments emission } \theta, \phi \\ \text{Start and TOF wall } \rightarrow \text{TOF=} L(p, Z, \theta, \phi)/\beta \end{array}$

LANDS - mean flux

- set-up optimization
- training reconstruction code
- efficiencies and systematic evaluation

FIRST Collab. Meeting

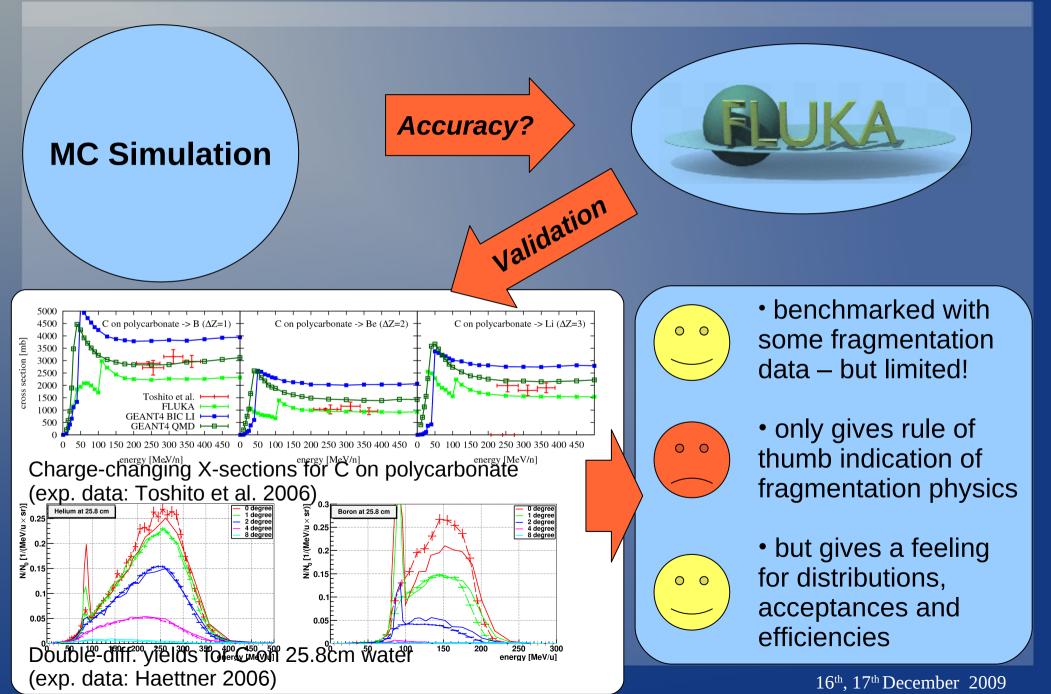

 $Bmon \rightarrow Beam \text{ impact point}$

Fragmentation of lons Relevant for

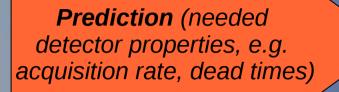
space and Therapy

FIRST

Scope and Objectives



FIRS1


Reliability of MC ?

FIRS

Relevant for

FIRST Relevant for space and Therapy 1 Preparatory Stage

Optimization (geometry, acceptances, efficiencies)

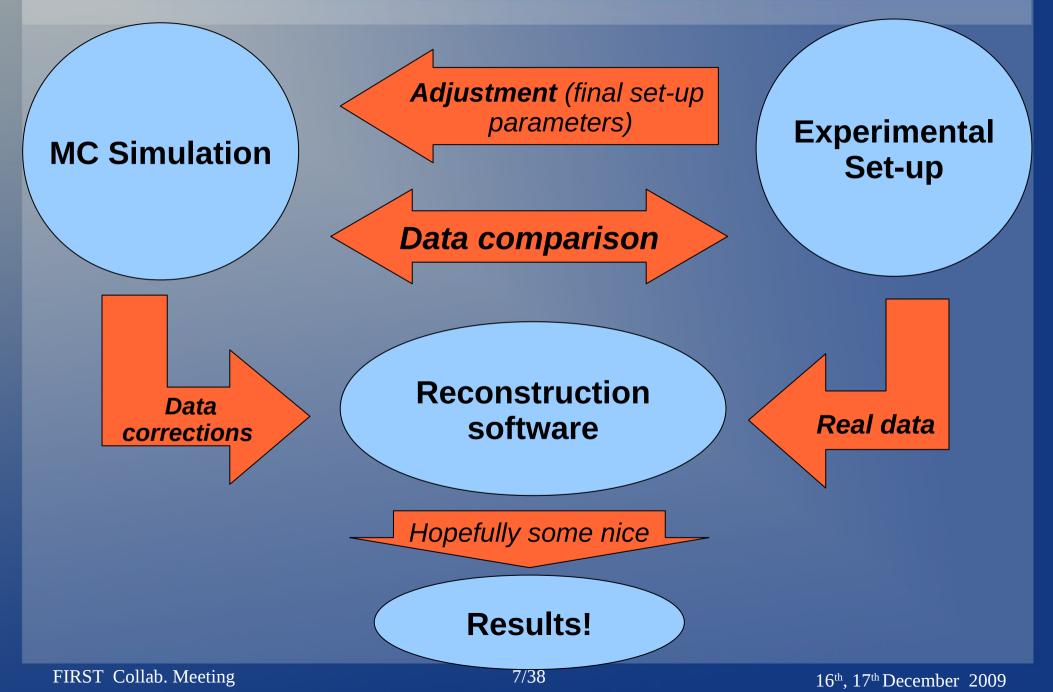
Reconstruction

software

Response param.

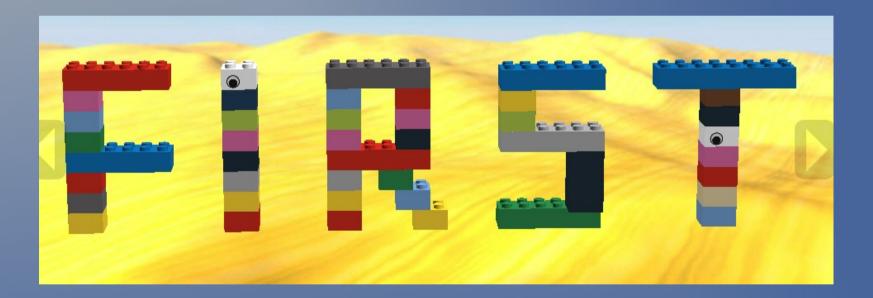
MC Simulation

Detector test measurements

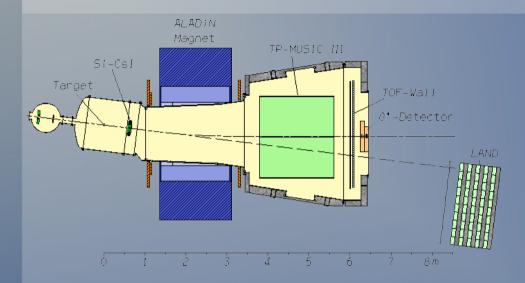

FIRST Collab. Meeting

Experimental

Set-up


Fragmentation of lons Relevant for Space and Therapy 2 Stage with Exp. Data **EXPERIMENT**

FIRS7

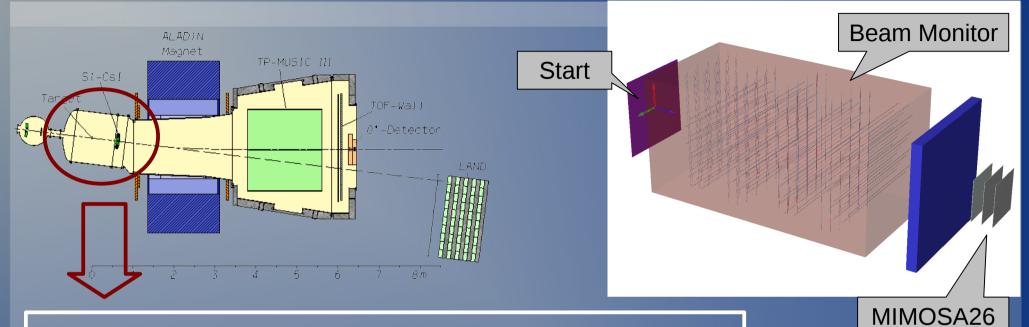


Structure and Status

initial modeling trial (by Vincenzo)

Fragmentation of Ior Relevant for

EXPERIMEN


Generalities:

Set-up of large detectors oriented on SPALADIN geometry

- \checkmark distances and angles between detectors (7.7°)
- Tracks of all particles in set-up scored
 - to calculate detector response
 - No EM particle tracks scored for the moment

FLUKA version 2008.3 + BME, using HADROTHErapy defaults
 For the moment disregarding delta-rays (high cut values)

Status: Interaction Region

Interaction region:

Start Counter

FIRS

EXPERIMEN

geom. & track scoring + quenched energy

Beam Monitor

geom. with wires & scoring

soon first comparison with data (see Alessio's talk)

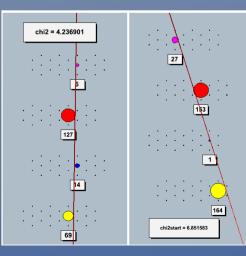
MIMOSA26 vertex detector

geom. & scoring in prep., codes to be merged

- Catania large-angle hodoscope
 - FLUKA geometry existing, codes to be merged

Status: Beam Monitor

Top view


Relevant for Space and Therapy

FIR:

EXPERIMENT

			-
			-
			C
<u> </u>			
<u>n</u> –			È
E H			-
H			-

wires: 30/80µm,aluminium/tungsten

Beam Monitor:

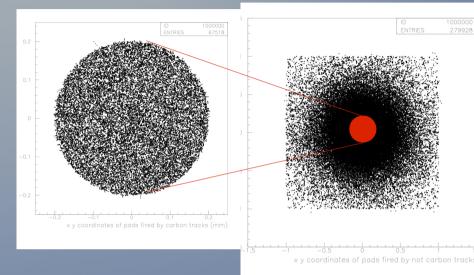
- geometry
 - with wires

scoring

currently:

point of closest passage

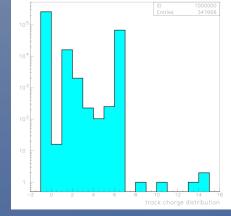
in future:


- via space-time relation (from Catania measurements)
- including diffusion terms

FIRST Collab. Meeting

Status: MIMOSA26

C 300MeV/n


Pads fired by carbon

Pads fired by particles other than carbon

MIMOSA26:

- simple geometry (3 planes)
 scoring
 - 1.3M sensitive pads per plane (18µm distance)
 - Prod. cut δ-ray 100keV

Track-charge distribution

FIRST Collab. Meeting

Status: Large Detector Region

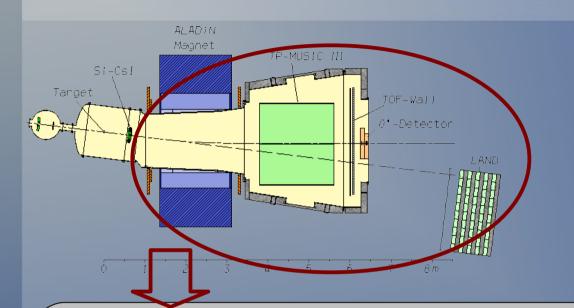
ALADIN

150

100

50

ß


-58

-100

-150 -200

-258

-100 0 100 200 300 400 500

Large detector region:

- ALADiN Spectrometer
 - geom. & magnetic field
- ✓ TP-MUSIC IV

FIRST Fragmentation of Ions Relevant for Space and Therapy

EXPERIMENT

- simple geom. with windows and P10
- no scoring
- ✓ TOF-Wall
 - geom. with slats & scoring in prep.
- ✓ LAND2
 - simple geom.
 - no scoring

16th, 17th December 2009

TOF-Wall

0.1 0.01

0.001

0.0001

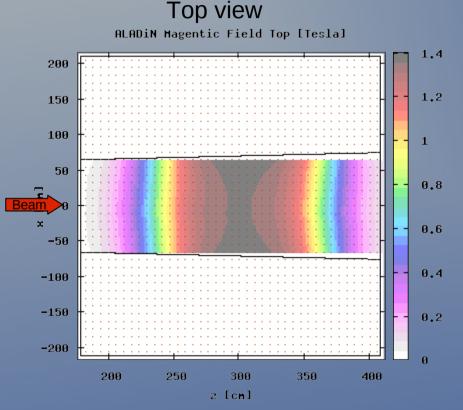
1e-05

1e-86

1e-07

1e-08

1e-18


1e-11

0 800 900

TP-MUSIC IV

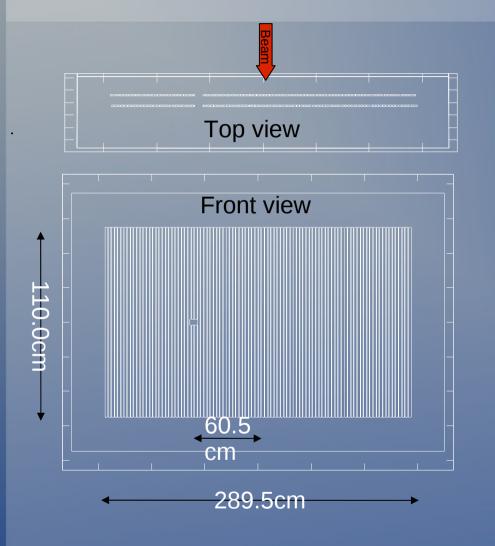
Set-up top view

Status: ALADiN

Fragmentation of lons Relevant for

bace and Therapy

EXPERIMENT


ЫR

ALADIN: geometry iron windows magnetic field centered to middle of magnet trilinear spatial interpolation linear scaling of field strength (meas. at 25A) in future: linear interpolation of 10 meas. fields

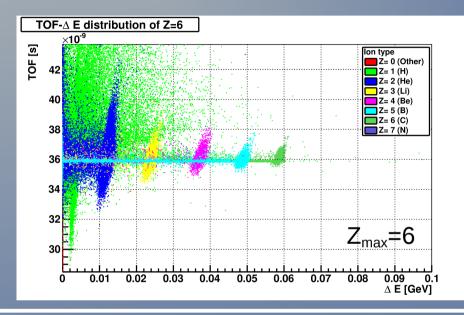
Fragmentation of lons Relevant for Space and Therapy

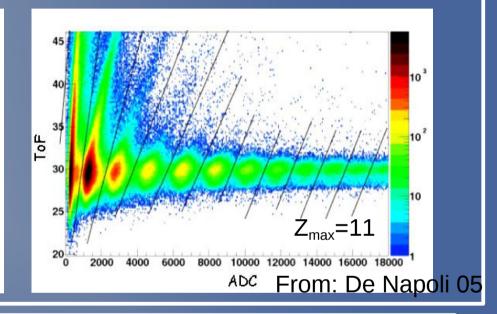
EXPERIMEN

Status:TOF-Wall

TOF-Wall:

- ✓ geometry
 - housing
 - windows
 - front and rear wall with slats and beam hole
- scoring tracks per slat
 - including quenched energy
 - in future:
 - amplitude of light output
 - signal arrival time


Details:


- 96 slats per wall, distance between slats set to 5mm!, hole: 3.4x7.2 cm2
- slat material: BC408, TOF-Wall gas N2 @ 1bar

FIRST Collab. Meeting

Towards TOF-Wall Signal Simul.

Correlation between time and amplitude for all slats superimposed.

- Scoring and read-out for all slats exists
- Quenching implemented (Birks law)
- have Sciot
- QuenchingNext step:
 - integrate attenuation of light and arrival time
 - calibration curve: light yield vs. track-length (Serfling '93)

$$ADC_{top} \propto L_{top} = L_0 e^{-h_{top}/\tau}$$

$$ADC_{bottom} \propto L_{bottom} = L_0 e^{-h_{bottom}/4}$$

TOF-Wall module consisting of 8 slats

FIRST Collab. Meeting

FIRS

EXPERIMENT

Detector signals

How to simulate detector signals? An approach in four basic steps:

- scoring of MC information
 - particle properties, track data, energy released

modeling of simple detector responses

• e.g. Birks law, light attenuation in scintillators, etc.

parametrization of complexer detector responses (measurements!)

- efficiencies
- resolutions
- saturation effects, gauge quantities, e.g. track-length-light output

digitization and adapting output format

TDC, ADC

FIR.

What can we expect?

Watch out: playground! It's a preliminary implementation of geometry and materials → to be refined in future!

Beam-target modalities:

- Gaussian beam 3mm FWHM
- C-C @ 200, 400 MeV/n
- O-C @ 400 MeV/n
- He-C @ 200 MeV/n
- Li-C @ 250 MeV/n
- Target thickness: 5,10 mm
- As default for comparison:
- C-C @ 400 MeV/n Target:5mm

Primary Interaction

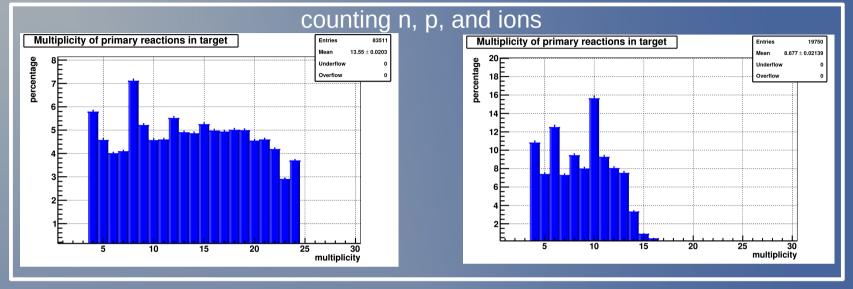
Fraction of interacting primaries:							
T[MeV/n]	Targ[mm]	Target	Whole Set-up				
200	C 5	4.3 %	13.8 %				
400	C 5	4.3 %	8.3 %				
400	C 10	8.4 %	13.5 %				
200	C 5	2.0 %					
250	C 5	3.5 %	7.5 %				
400	C 5	5.0 %	9.5 %				
	T[MeV/n] 200 400 400 200 250	T[MeV/n]Targ[mm]200C5400C5400C10200C5250C5	T[MeV/n] Targ[mm]Target200C 54.3 %400C 54.3 %400C 108.4 %200C 52.0 %250C 53.5 %				

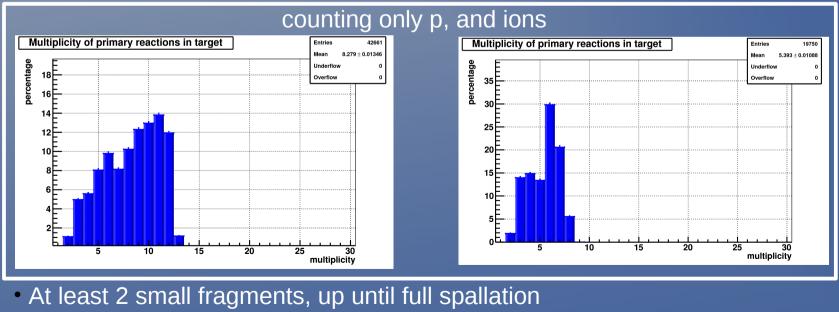
FIRST Fragmentation of Ions Relevant for Space and Therapy

EXPERIMENT

C 400MeV/n on C 5mm The interactions of primaries are distributed between set-up regions as follows (given as fraction of all interacting primaries): interactions in the target: 51.4 + 0.2 %interactions before the target: in beam mon and start det: 3.8 % interactions after the target: "Filtering" in gaseous subst. of det.: 14.3 % in windows of det.: 3.6 % in vertex tracker: 4.2 % in holes in TOFW: 0.1 % **Big fraction** missing percentages mainly produced in the TOF-Wall slats FIRST Collab. Meeting 20/3816th, 17th December 2009

< Multiplicities


C on C @ 400MeV/n


Fragmentation of lons Relevant for Space and Therapy

FIR:

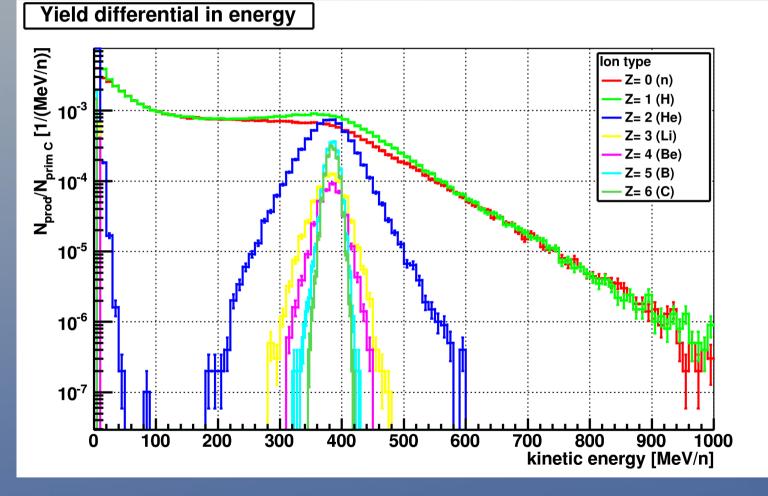
EXPERIMENT

He on C @ 200MeV/n

• How reliable are FLUKA models?

FIRST Collab. Meeting

Particle Yields


C on C 10mm @ 400MeV/n

Fragment yield per primary (particles produced in target) w/o and with T>30 MeV/n cut									
Particle type	n	Н	He	Li	Be	B	С	Total	
Yield Cut	0.377	0.417	0.062	0.006	0.004	0.009	0.007	0.882	
Yield	0.472	0.554	0.148	0.013	0.008	0.018	0.014	1.228	
Ratio	0.798	0.753	0.419	0.479	0.480	0.484	0.488	0.718	

Particle Yields - Energies

C on C 10mm @ 400MeV/n

• p and n up to double of beam energy (Fermi motion)

• Z>2 => projectile like

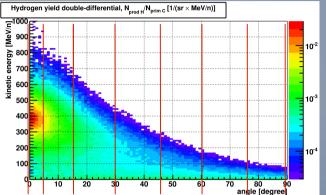
FIRST Collab. Meeting

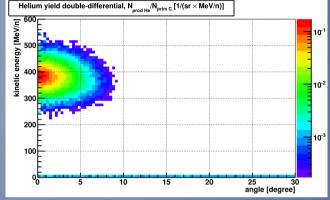
Particle Yields - Angles

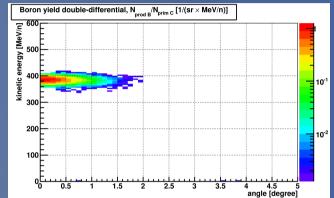
C on C 10mm @ 400MeV/n ALADiN set-up Yield differential in angle for T > 30.0 MeV/n **CT Hodoscope** Calorimeter? V_{prod}/N_{prim c} [1/sr] lon type Z= 0 (n) **MIMOSA** Z = 1 (H)10 Z= 2 (He) Z= 3 (Li) Z= 4 (Be) Yield differential in angle for T > 30 Z = 5 (B)Z= 6 (C) N_{prod}/N_{prim c} [1/sr] 10⁻¹ 10^{-2} 10^{-3} 80 10 20 30 70 60 **10**⁻¹ >1% until ~70°! for Z>2 10⁻² Covered partially by Vertex - but no energy 10^{-3} 2 6 8 10 12 14 Δ information **FIRS** 24/38

FIRS

EXPERIMENT

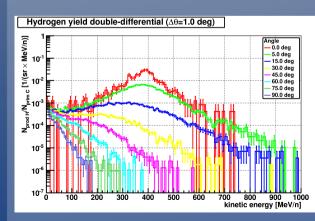

Relevant for Space and Therapy

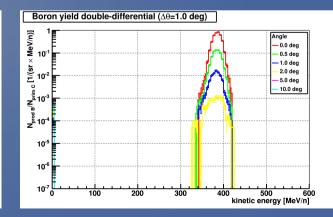

D-D Particle Yields

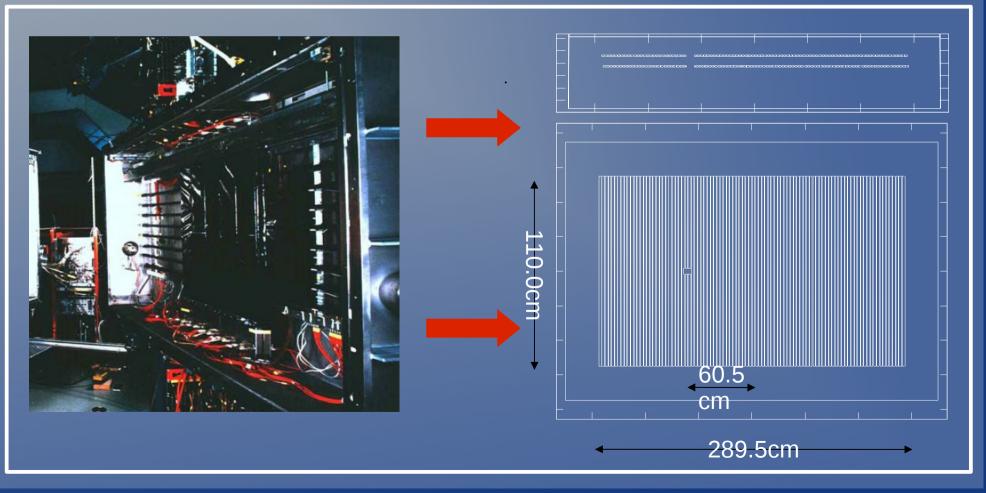

C on C 10mm @ 400MeV/n

FIRST Fragmentation of Ions Relevant for Space and Therapy

EXPERIMENT




Η


Helium yield double-differential (△θ=1.0 deg) [(u//)] 10 Anale - 0.0 deg - 2.0 deg - 5.0 deg د [1/(sr 7.5 deg 10.0 deg 15.0 deg z^{110⁻¹} þ د ح 10⁻⁵ 10-6 107 100 200 300 400 500 600 kinetic energy [MeV/n]

FIRST Collab. Meeting

TOF-Wall Study

FIRST Collab. Meeting

26/38

TOF-Wall Study

Motivations:

- 1) Constraining factor for event rate: Due to TP-MUSIC and to TOF-Wall read out time the primary beam rate is of the order of kHz ("pile-up effect").
 - Investigate possibilities for a veto trigger on TOF-Wall to increase possible event rate.

2) Several TOF-Wall scintillator slats are not working.

- Investigate consequences of reduced number of slats (single wall).
- 3) Due to granularity of TOF-Wall scintillator slats (2.5cm width) multiple hits on a slat are possible per event.
 - What is the probability of such multiple hits?

FXPERIMENT



"Set-up Efficiencies"

Which fraction of particles produced in the target arrives at the TOF-Wall?

- looking only at fragments exiting target with angles smaller than 4.5° (hodoscope)
- accounting for scattering, removal by inelastic interactions, energy losses

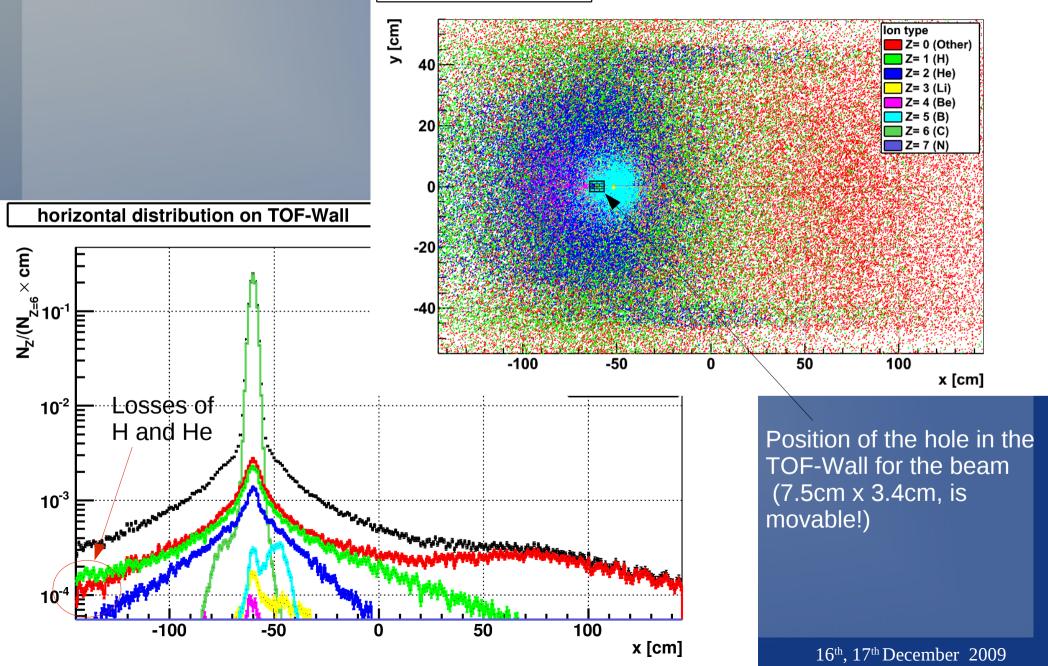
C on C 10mm @ 400MeV/n Magnet current: 20.5A (max 25A)

Geometric acceptance of TOF-Wall is \sim 4.5°. Why are H and He lost?

Loss causes:

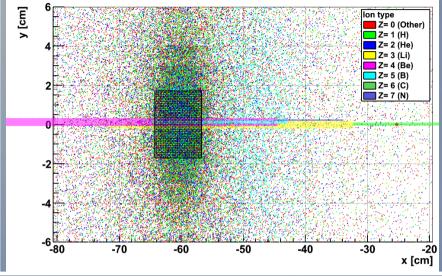
- ~10% of H: acceptance of ALADiN in height: ~4°
 => have ALADiN close to target (1.6m for simulations)
- ~40% of H: Small magn. rigidity of p, slow p's are lost
 => how strong does magn. field have to be for isotopic
 separation and mom. resolution? (MUSIC resolution!)

Fragment Distrib. on TOF-Wall

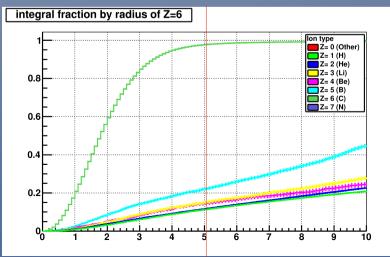

x-y distribution of Z=6

FIRS

Relevant for


EXPERIMENT

space and Therapy


Hole and Veto Trigger

Purpose of Hole: avoid pile-up by reducing triggering of "unwanted events"

Fraction of particles in hole (at x=-60.5cm):HHeLiBeBC0.0530.0590.0770.0790.1310.764

Idea: adding a veto detector in front of hole with larger size to exclude even more notwanted events with minimum bias (A. Sciubba).

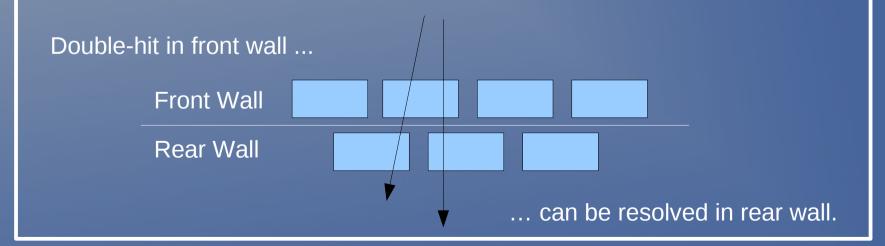
 With a veto detector of 5cm radius: >98% of primary C vetoed

Under investigation:

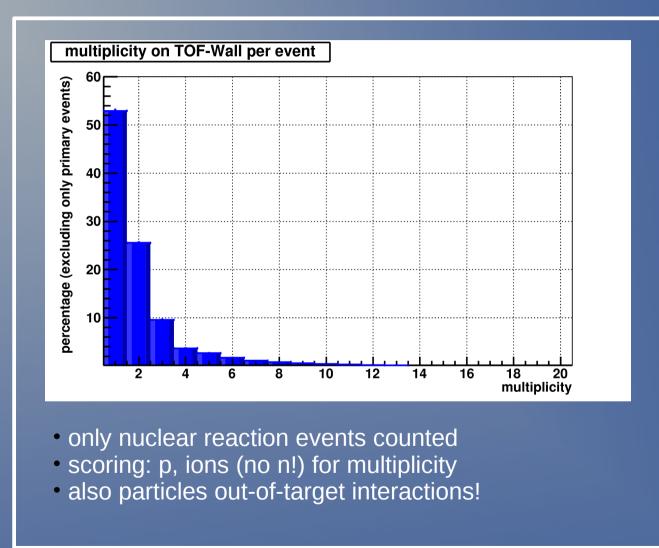
- Use ΔE -threshold to veto only primaries?
- Extrapolation to recover lost particles?
- Use multiplicity on TOF-Wall as additional selection criteria?

FIRST Collab. Meeting

EXPERIMENT



Multi-hit Analysis

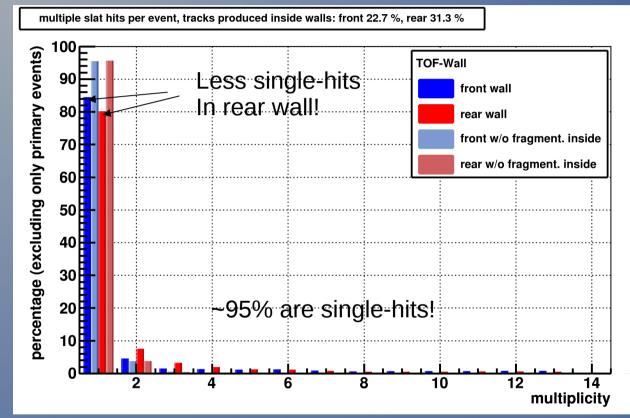

Problem: Granularity of detector (slat width is 2.5 cm). This leads to the possibility of having **multiple hits for which several particles are counted as one** (often with the wrong charge).

Details see diploma thesis V. Serfling '93.

A **second row "reduces the granularity" and covers gaps** in front row. (Number of working slats, usable for the second row, is currently not known.)

Multiplicities on Whole TOF-Wall

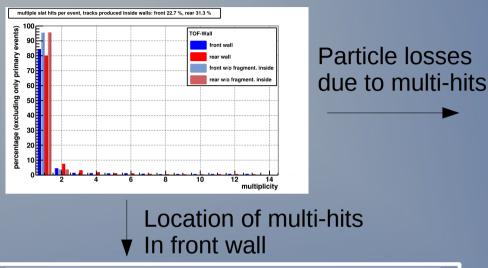
C on C @ 400MeV/n


Relevant for

Scenario used for simulations:

- Assuming only front wall complete
- and some slats for rear wall
- Study done for C @ 400MeV/n on C

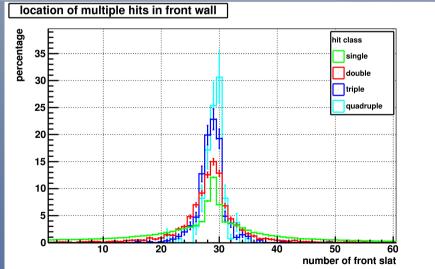
Multiple hits of scintillation slats scoring: p, ions (no n!) for multiplicity


C on C @ 400MeV/n

Significant particle production in TOF-Wall slats!

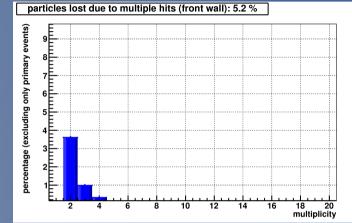
- compare: thickness target: 5-15mm, slats: 2x10mm
- consequences: signal modification:
 - wrong amplitude (charge!)
 - timing information in wall where produced should be ok
- consequences: increased multiple hit rate in rear wall

FIRST Collab. Meeting


EXPERIMENT

FIR:

Relevant for


EXPERIMENT

concentrated to ~10 slats!

• expect significant improvement when adding a second row only for this area

Assuming multiple hits are identified as one particle (of wrong charge).

Of course vertex tracker and MUSIC help detecting correct multiplicity.

Excluding in both graphs interactions in the TOF-Wall slats themselves!

FIRST Collab. Meeting

Discussion of results/further investigations:

Where do high multiplicities in slats come from?

(multiplicities up until 5 observed)

- origin mainly from H and He produced in gas of MUSIC and TOF-Wall (P10, N_2) and some from the window between MUSIC and TOF-Wall (set to titanium)

Electrons are not included in the analysis!

- projectile-like electrons of low quantities are of noise level (info C. Sfienti)
- but electron shower (building up in gas in front of wall) can cause multi-hit (specifically on front wall)
 - reported by V. Serfling '93 (causing double-hit ratio front/rear wall: 54%/46%)
 - would need full signal modeling (and detector efficiencies) to answer this question

How many double-hits can we correctly identify with a second row?

- necessitates the implementation of the TOF-Wall reconstruction
- should be done in future with the reconstruction software team

Outlook

Next steps for the MC simulation

- Signal modeling:
 - TOF-Wall (preliminary, exp. data needed)
 - Beam Monitor (space-time relation, diffusion)
 - Close future interaction with the reconstruction software team
- Merging with simulation of MIMOSA and Catania Hodoscope (C. Morone)
- Modeling of TP-MUSIC IV?
- We hope to get a first "overall simulation" ready by Mai 2010

Summer 2010: Measurements @ LNS, Catania

- measure response of MIMOSA to p and carbon
 - compare to simulations

Wanted: your input

• Issues that should (can) be addressed with the simulation

Thanks for attentive ...

Particle Training Network for European Radiotherapy http://cern.ch/partner

This research project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2008-215840-PARTNER).

FIRST Collab. Meeting

Materials in Beam (Add.)

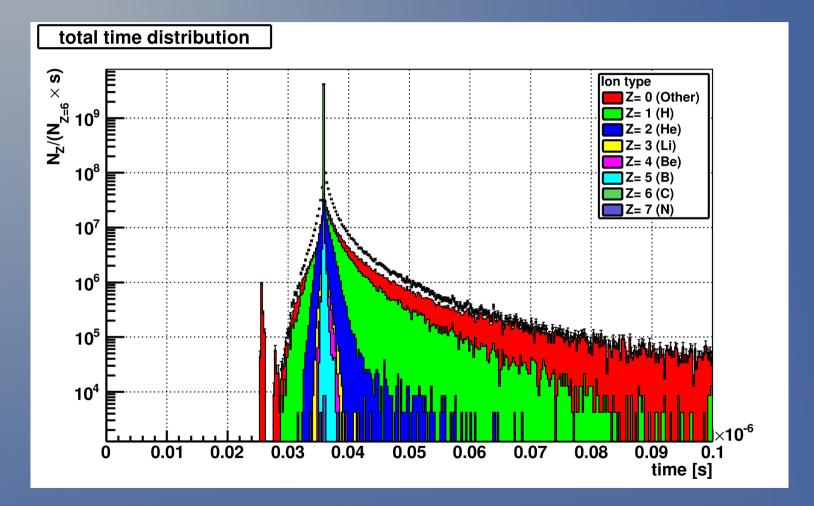
- Materials in the beam (beam view):
- start:

FIRST Fragmentation of Ions Relevant for Space and Therapy

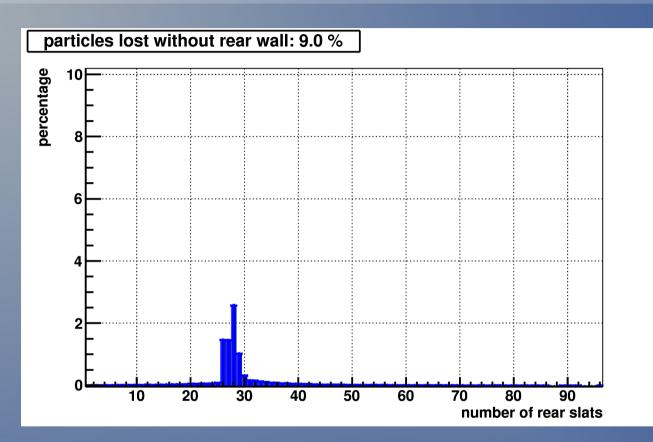
- > scintillator 200um SCSN38
- beam monitor:
 - > window 100um mylar
 - > air 12cm with wires: 30/80um,aluminium/tungsten
 - > window 100um mylar
- target:
 - > 0.5-1.5cm carbon
 - > vertex traker:
 - > 3x200um silicon
- ALADIN:
 - > window 100um titanium
 - > vacuum 230cm (with He @ p=1e-4 bar, rho=1.64E-8 g/cm3)
 - > window 100um titanium
- TP-MUSIC IV:
 - > window 100um titanium
 - > P10 250cm (rho=0.001677 g/cm3 @ p~=1 bar)
 - > window 100um titanium
- TOF-Wall:
 - > nitrogen gas 57.5cm (rho=.001251 g/cm3 @ p~=1 bar)
 - > scintillator BC408 2x1cm
 - > window 100um titanium

Li250 on C 5mm								
fragment yield per primary (particles produced in target) w/o and with T>30.000000 MeV/n cut Particle type n H He Li Be B C Total								
Yield Cut 0.126 Yield 0.169	0.112 0.01 0.169 0.04					0.255 0.402		
Ratio 0.745	0.661 0.30	4 0.362	0.000	0.000	0.000	0.633		
******	******	******	*****	*****	****			
He200 on C 5mn	በ *********	*****	*****	*****	****			
• • •	er primary (particles	•		d with T>30	0.000000 N	/leV/n cut		
Particle type r		Be B C	Total					
Yield Cut 0.043	0.048 0.00					0.094		
Yield 0.066	0.078 0.02	3 0.002	0.001	0.003	0.002	0.176		
Ratio 0.652	0.607 0.12					0.531		
O400 on C 5mm								
fragment yield per primary (particles produced in target) w/o and with T>30.000000 MeV/n cut								
Particle type r		•		Total	0.000000			
Yield Cut 0.250			•		0.005	0.007	0.004	0.592
Yield 0.304	0.355 0.08		0.004	0.007	0.009	0.007	0.004	0.783
Ratio 0.822	0.780 0.48		••••	0.304 *********		1.000	0.999	0.756

FIRST Fragmentation of Ions Relevant for Space and Therapy


"Set-up Efficiencies" (Add.)

Some numbers: C on C 10mm @ 400MeV/n distance Target-TOF-Wall: DtT 726.75cm Magnet current: 20.5A (max 25A) distance Target-hodoscope: DtH 60cm Z "Set-up efficiency" distance Target-ALADiN s: DtAs ~160cm 0.459 +/- 0.004 distance Target-ALADiN e: DtAe 390 0.924 +/- 0.006 2 ALADIN gap height: 50cm 0.977 +/- 0.018 3 ALADIN gap s,e: 130cm, 150cm Δ 0.982 +/- 0.022 ALADIN thick: 230cm 0.984 +/- 0.015 5 2*DtAs*Tan(4.5°)=25.2cm 0.985 +/- 0.017 6 2*DtAe*Tan(4.5°)=61.4cm 2*DtH*Tan(4.5°)=45.6cm What are max. efficiencies we can reach when: 50/61.4=0.81 removing all materials in the beam, geometric acceptance of the ALADIN having all fragment distributions centred in the magnet for the middle of the TOF-Wall)? produced fragments is ~40 in theta and ~90 in phi 4/4.5 = 0.889Z "Set-up efficiency" TOF-Wall area: 1 0.878 +/- 0.006 target-hodoscope: 110cm x 2*DtT*Tan (4.5°)=114.4cm 2 0.952 +/- 0.006 289.5cm (due TOF-Wall y= 110cm 3 0.989 +/- 0.018 to gaps, TOF-Wall x= 289.5cm (240cm) 4 0.998 +/- 0.023 normally 110cm 110/114.4=96.1538462 5 1.000 +/- 0.015 x 240cm) 1.000 +/- 0.017 6


FIRST Collab. Meeting

FIRST Fragmentation of Io Relevant for Space and Therapy

Losses due to gaps (Add.)

Expected losses due to a simple geometry consideration: gaps in surface: 0.5cm/(2.5cm+0.5cm)=16.7%.

WARNING: gaps were chosen large for this simulation (5mm), They will be hopefully smaller for real set-up.

Multi-hits on TOF-Wall (Add.)

Effects of multi-hits:

FIR:

EXPERIMENT

- without recognition software -> counted as one event (particle loss and misidentification!)
- amplitude larger as than for single hit, consequence: under-estimation of charge
- effect on time information, two cases:
 - c < dy/dt: signal velocity smaller than quotient of distance in time and vertical space
 - time signal gives something similar to distance of the two particles on slat

• c > dy/dt

- time signal gives position of first particle

Details see V. Serfling '93

Multi-hits on TOF-Wall (Add.)

Possiblilities for identification of Multihit (V. Serfling '93): -> "Simple criteria: isolated double hits": in front row one slat is hit with neighbouring slats not hit - in back row two slats are hit

- BUT: also "crossers" (angles of incoming particles between -6.4 and +3.1 degree), nuclear reactions, delta-rays (MeV regime=> some mm in scintiallation material, some meter in gas)

- not sufficient as criteria (additionally: in vertical direction at least 10cm apart)

-> big vertical distance of two hits in the koinzident slats

-> asymmetry of amplitudes of koinzident slats (asym=(ampl I-ampl r)/(ampl I+ampl r))

-> "detection of non-isolated double hits" together with other detectors (TP-MUSIC IV (res. of mm) and vertex) is possible!

-> correction of missing multiplicities by MC analysis is possible

Multi-hit Reconstruction Routine (Add.)

description multi-hit reconstruction routine (V. Serfling '93):

- simple track recognition routine:

- subtract cross-talk (due to optics+electronics, empirical factor: 4%)
- AMPpr=AMP-0.04*(AMPI+AMPr)
- sort out AMPpr <=0
- determine vertical position

- preferable by time: y=(Ttop-Tbot)/-2c (due to better resolution) (c: signal velocity = 16.8 cm/ns (is ~10% smaller than light velocity in scintillator: 19cm/ns, refractive index: 1.58))

- if time wrong by : y=1/(2*lambda)*ln(AMPtop/AMPbot)
- sort in first and second order hits
- 1st order criterium: AMP bigger than AMPI and AMPr
- 2nd order criterium: AMP smaller than AMPI or AMPr
- track recognition step
- sort
- first: 1st order hits by amplitude
- second 2nd order hits by amplitude
- for finding coinzident slat from other wall for 1st order hit
- look in two partner slats (left/right) in this order:
- if one of partner slats is 1st order hit -> select this one
- if one of partner slats is 2nd order hit -> select this one
- if both partner slats are 2nd order hits -> select higher amplitude
- no coinzident slat was found -> save as single (assume lost particle due to: gap, stopped particle, broken detector)
- for finding coinzident slat from other wall for 2nd order hit
- same as above but if no coinzident slat is found ->throw away (assume cross talk effects)
- connect all coinzident slats to tracks (x resolution better by second slat: move by 6.25mm in corect direction)

possibilities for detection of multi-hits (V.Serfling):

- simple criteria: isolated double hit
 - but recognizes also "crossers", reactions in the scintillator and delta-rays!!!!
- big (reconstructed) vertical distance between coincident slats
- asymmetry of coinzident amplitudes (asy=(AMPI-AMPr)/(AMPI+AMPr)) (not appliable due to strongly non-linear behaviour)

routine for multi-hit recognition:

- simple criteria + 100mm distance between coinzident slats (~1/4 of all real double hits were identified)
- calculate time and charge from other particle

FIRST Collab. Meeting

Some boundary conditions

- Out of target interactions must be kept below ~ per cent levet with respect to the on target interactions.
- Trigger rate must be ≤ kHz due to pile-up in the MUSIC TPC (10% pile-up @4kHz)
- Considering a maximum target thickness of 10 mm, we expect at maximum ~10% of interaction probability.
- The beam spot for Carbon projectiles can be ~ 3mm FWHM
- The geometric acceptance of the ALADIN magnet for the produced fragments is ~4° in θ and ~9° in ϕ