Feebly-interacting dark matter and long-lived particles at the LHC¹¹¹

Alberto Mariotti

Based on works with different combinations of Lorenzo Calibbi, Laura Lopez Honorez, Steven Lowette, Sam Junius and Francesco D'eramo JHEP 1809 037, JHEP 1907 136 and arXiv:20XX.XXXX

> Universita' Roma 3 21 November 2019

Beyond Standard Model Physics

Many fundamental questions still open ...

Alberto Mariotti (VUB)

Beyond Standard Model Physics

Many fundamental questions still open ...

З

Alberto Mariotti (VUB)

Evidence for Dark Matter

 $\Omega_{DM}h^2 \simeq 0.12$

Alberto Mariotti (VUB)

4

FIMP DM and LLP @ LHC

Particle Dark Matter

Assume Dark Matter is a new elementary particle

1.How does it couple with the Standard Model?

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

1.How does it couple with the Standard Model?

2. How it is produced at early times?

7

Dark Matter basic questions

1.How does it couple with the Standard Model?

2. How it is produced at early times?

3. How do we detect it?

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

Weakly Interacting Massive Particle

Dark Matter abundance through freeze-out (FO) mechanism

- + Dark Matter annihilates into Standard Model Particles
- **+** Dark matter in thermal equilibrium at high temperature
- *□* ★*DHrk Matter abundance freeze-out during cooling of universe*

!!! Correct abundance for weakly interacting massive particle !!!

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

Probing DM at experiments

WIMP-like DM is prototype of DM simplified models

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

WIMP under pressure

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

Dark Matter ZOO

But possibility for Dark Matter are much vaster

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

21-11-2019

WIMP vs FIMP

WIMP weakly interacting massive particle

- + Coupling of order 1 with the SM
- + Thermal equilibrium with SM
- + No dependence on initial cond.
- + Freeze-out mechanism
- + Testable in direct/indirect detection
- + Testable @ LHC

FIMP

feebly interacting massive particle

- + Coupling of order 10^(-10) with SM
- + Not in thermal equilibrium with SM
- + Dependence on initial cond.
- + Freeze-in mechanism
- + Elusive in direct/indirect detection
- + Testable @ LHC (LLP signatures)

WIMP vs FIMP

In This Talk

FIMP

feebly interacting massive particle

- + Coupling of order 10^(-10) with SM
- + Not in thermal equilibrium with SM
- + Dependence on initial cond.
- + Freeze-in mechanism
- + Elusive in direct/indirect detection
- + Testable @ LHC (LLP signatures)

Features

What is freeze-in?

+Lead to longlived particles

Cosmological history plays a role

FIMP DM and LLP @ LHC

Freeze In Dark Matter

+ Dark matter not in thermal equilibrium with SM bath

+ Produced via decay or scattering of particles in thermal equilibrium

Hall, Jedamzik, March-Russell, West '09 Blennow, Fernandez-Martinez, Zaldivar '13 Bernal, Heikinheimo, Tenkanen, Tuominen, Vaskonen '17 Co, D'Eramo, Hall, Pappadopulo '15 Bélanger, Cai, Desai, Goudelis, Harz, Lessa, J.No, Pukhov, Sekmen, Sengupta, Zaldivar, Zurita '18

Alberto Mariotti (VUB)

Freeze-in through decay

★Mother (mediator) A in thermal equilibrium ★Mediator A decays to Dark Matter and produce it

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

FIMP phenomenology

Can LHC probe FIMP?

Alberto Mariotti (VUB)

FIMP phenomenology

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

FIMP (decay) phenomenology

FIMP (decay) phenomenology

LongLived Signatures @ LHC

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

LongLived Signatures @ LHC

New CMS and ATLAS searches keep on coming
Many signatures not yet explored
HL-LHC will open new opportunities
Interesting for future detectors
Active Working Group Report: arXiv:1903.04497
Mext meeting: 27-29 November in Gheat

DM connection

What are DM models with long-lived signatures?

+ Several DM scenarios with LLP signatures...

* FIMP, SuperWIMP, Asymmetric DM, Pseudo-Dirac DM, Conversion Driven FO, ...

* And others to come?

22

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

Singlet Doublet Freeze In

+ Minimal model with few extra fermionic states Mahbubani, Senatore '05

$$(\psi_u)_{2,\frac{1}{2}} = \begin{pmatrix} \psi^+ \\ \psi_u^0 \end{pmatrix}, \qquad (\psi_d)_{2,-\frac{1}{2}} = \begin{pmatrix} \psi_d^0 \\ \psi^- \end{pmatrix}, \qquad (\psi_s)_{1,0}$$

+Lagrangian coupling with the Higgs

$$(\psi_{u})_{2,\frac{1}{2}} = \begin{pmatrix} \psi_{u}^{0} \\ \psi_{u}^{0} \end{pmatrix}, \quad (\psi_{d})_{2,-\frac{1}{2}} = \begin{pmatrix} \psi_{u}^{u} \\ \psi_{-}^{-} \end{pmatrix}, \quad (\psi_{s})_{1,0}$$

$$(\psi_{s})_{1,0}$$

$$(\psi_{s$$

Singlet Doublet Freeze In

+ Minimal model with few extra fermionic states Mahbubani, Senatore '05

$$(\psi_u)_{2,\frac{1}{2}} = \begin{pmatrix} \psi^+ \\ \psi_u^0 \end{pmatrix}, \qquad (\psi_d)_{2,-\frac{1}{2}} = \begin{pmatrix} \psi_d^0 \\ \psi^- \end{pmatrix}, \qquad (\psi_s)_{1,0}$$

+Lagrangian coupling with the Higgs

$$(\psi_{u})_{2,\frac{1}{2}} = \begin{pmatrix} \psi_{0} \\ \psi_{u}^{0} \end{pmatrix}, \quad (\psi_{d})_{2,-\frac{1}{2}} = \begin{pmatrix} \psi_{u}^{0} \\ \psi^{-} \end{pmatrix}, \quad (\psi_{s})_{1,0}$$
indicating the second s

+Regime for Freeze-in: $y \ll 1$, $|m_s| \ll |\mu|$

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

Singlet Doublet Freeze In

+ Minimal model with few extra fermionic states Mahbubani, Senatore '05

$$(\psi_u)_{2,\frac{1}{2}} = \begin{pmatrix} \psi^+ \\ \psi^0_u \end{pmatrix}, \qquad (\psi_d)_{2,-\frac{1}{2}} = \begin{pmatrix} \psi^0_d \\ \psi^- \end{pmatrix}, \qquad (\psi_s)_{1,0}$$

+Lagrangian coupling with the Higgs

$$(\psi_{u})_{2,\frac{1}{2}} = \left(\begin{array}{c} \psi_{u}^{0} \\ \psi_{u}^{0} \end{array}\right), \quad (\psi_{d})_{2,-\frac{1}{2}} = \left(\begin{array}{c} \psi_{u}^{0} \\ \psi_{-} \end{array}\right), \quad (\psi_{s})_{1,0}$$

$$(\psi_{s})_{1,0}$$

$$(\psi_{s})_{1,$$

+Regime for Freeze-in: $y \ll 1$, $|m_s| \ll |\mu|$

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

Where is region of parameter space suitable for freeze-in ?

$$Y_{\chi_1} = \frac{270M_{Pl}}{(1.66)8\pi^3 g_*^{3/2}} \left(\sum_{B=Z,h} \frac{\Gamma[\chi_3 \to B\chi_1]}{m_{\chi_3}^2} + \sum_{B=Z,h} \frac{\Gamma[\chi_2 \to B\chi_1]}{m_{\chi_2}^2} + g_{\overline{\varphi}} \frac{\Gamma[\psi^+ \to W^+\chi_1]}{m_{\psi}^2} \right)$$

Dark matter abundance

Decay width of heavy doublet components into dark matter

Where is region of parameter space suitable for freeze-in ?

One can impose the correct relic abundance and reduce the parameter space

Alberto Mariotti (VUB)

Fix Dark Matter abundance to correct value

$$\Omega_{\chi_1} h^2 \simeq 0.11 \left(\frac{y}{10^{-8}}\right)^2 \left(\frac{m_{\chi_1}}{10 \text{ keV}}\right) \left(\frac{700 \text{ GeV}}{\mu}\right)$$

Fix Dark Matter abundance to correct value

Decays to Z and h almost democratically

$$\chi_{2,3} \to h/Z + \chi_1$$

Decay length ranges from 0.01 to 1000 meter

> Displaced Z/h plus MET

> > for Higgsino-gravitino see Meade, Reece, Shih '10 Liu, Tweedie, '15

Collider signatures

30

Alberto Mariotti (VUB)

Recasting ATLAS DV+MET

Combining LHC and Cosmo

Viable region on parameter space and pheno probes

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

FIMP at the LHC

Feebly Interacting Singlet Doublet Model

★Naturally involves feeble coupling

★*Extremely hard to detect in experiments*

★LHC can probe these models via exotic signatures

★Interplay of displaced vertices and cosmology!

★LHC reach can extend to not-warm dark matter

21-11-2019

Alberto Mariotti (VUB)

What about reheating?

Q: How does the previous picture (freeze-in vs LLP) change with Tre?

Inputs from cosmology

★After inflation: simple evolution of Universe energy density ★Governed by coupled Boltzmann equations

T-reheating is new parameter in the model !!

See also Di Marco, De Gasperis, Pradisi, Cabella '19

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

A toy model

I consider a toy model to illustrate the impact of Tre on the DM pheno

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

A toy model

Alberto Mariotti (VUB)

High reheating T

★ Freeze-in during radiation domination ★ Freeze-in is IR dominated, stops at $T \sim \frac{m_{\phi}}{3}$ ★ DM abundance scales prop to mediator decay width

★*Recover previous simplified assumptions results*

FIMP DM and LLP @ LHC

21-11-2019

PRELIMINARY

Small reheating Temp.

Low reheating temperature reduces DM abundance

FIMP DM and LLP @ LHC

PRELIMINARY

Max T reheating @ LHC PRELIMINARY

We fix Dark Matter mass and impose correct DM relic abundance

Reheating temperature is predicted

★ Fix Dark Matter mass at the lowest allowed value

★Contours of Maximal T reheating compatible with DM hypothesis

!!! Indirect LHC probe of T reheating !!!

Alberto Mariotti (VUB)

FIMP DM and LLP @ LHC

Calibbi, D'Eramo, Junius, Lopez Honorez, AM

★Bottom-up approach for FIMP simplified models and LHC signatures $B \rightarrow SM + X$ ★Include higher dimensional operators study

	$A_{\rm SM}$	Spin A	Spin <i>B</i>	Interaction
		0	1/2	$\overline{\psi_{ m SM}} \Psi_B \phi$
$3 \to \chi A_{SM}$	$\psi_{ m SM}$	1/9	0	$\overline{\psi_{ m SM}}\chi\Phi_B$
Classify cases in		1/2	1	$\overline{\psi_{ m SM}}\Gamma^{\mu}\chiV^{\mu}_B$
base of spin and	F	0	1	$V^{\mu u}_B F_{\mu u} \phi$
gauge quantum	Γμν	1/2	1/2	$\overline{\psi_{ m SM}}\sigma_{\mu u}\chiF^{\mu u}$
numbers		0	0	$\Phi_B^\dagger H \phi$
	H	U	1	$V^{\mu}_{B}(c_{\phi}H\partial_{\mu}\phi+c_{H}\phi D_{\mu}H)$
		1/2	1/2	$\overline{\Psi_B}\chiH$

Provide connection between LLP signatures and DM cosmology

Some related works: Calibbi, Lopez-Honorez, Lowette, AM '18 Singlet-Doublet model with light DM Bélanger, et al '18 — Simplified models assuming instantaneous reheating Rychkov Strumia '07, ... Garcia, Mambrini, Olive, Peloso '17 Gravitino DM, High Dim.

Alberto Mariotti (VUB)

R -

FIMP DM and LLP @ LHC

Conclusions

★*Explore alternative DM scenarios!*

★FIMP links DM to long-lived/displaced signatures @ LHC

★Interplay with cosmology and reheating temperature

... Take home messages ...

★LHC can probe Feebly interacting DM!

★*FIMP motivates further exotic LHC searches*

★*Rich phenomenology in DM production at early times*

★Windows on DM cosmological history at the LHC

42