PID Selectors Status

December 17th 2009

Nicolas Arnaud (LAL-Orsay)

- PID selectors in a nutshell
- Issues & fixes
- Next steps

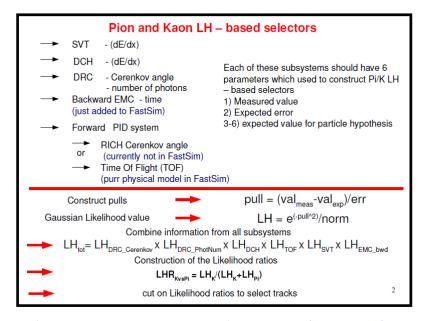
PID in FastSim

- Directly related packages
 - PacDirc: DIRC-like PID barrel simulation
 - PacForwardPid: Forward PID code (designs, simulation and reco.)
 - **PacPid**: Definitions of PID selectors and sequences
 - PacPidCalib: Tools to test selectors using clean track samples
 - BetaMicroAdapter: Containers with basic detector (⊃ PID) info.

+ all packages
from systems
providing
input
information to
the selectors

- Documentation in the **SuperB** wiki: (likely not up-to-date)
 - PacPid http://mailman.fe.infn.it/superbwiki/index.php/FastSimDoc/PID_simulation#PacPid
 - General documentation http://mailman.fe.infn.it/superbwiki/index.php/FastSimDoc/PID_simulation
- 'Real' (= not based on truth information) selectors
 - PacPidFirstElectronSelector: Piti et al., frozen since September
 - PacPidCutsMuonSelector: Marcello et al., needs tuning (← FullSim)
 - PacPidLHPionSelector Leonid et al.; various inputs: SVT, DCH, PID
 - PacPidLHKaonSelector → Cuts to be retuned when inputs change
- PacPidTableBasedSelector: Leonid + Alejandro
 - Generalize PacPidTruthBasedSelector
 - New tables soon: more bins + variable bin width to match detector boundaries

Tools to test PID selectors

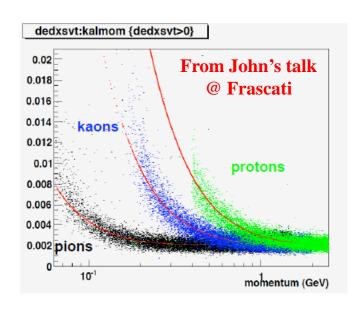

- PacPidCalib package
 - → Development by Piti and Leonid after initial commits by NA
- Twofold goal:
 - To test the selector performances: efficiency and misID rates
 - To test the (hadron) selector inputs: SVT & DCH dE/dx, θ_C and N_{γ} from DRC, etc.
- Single track generator: generation flat in momentum and $cos(\theta_{lab})$
 - → angular-integrated results need reweighting before physics use

Example tcl snippet
extracted from
PacPidCalib/
PacPidCalibMC.tcl

Tools to test PID selectors (cont'd)

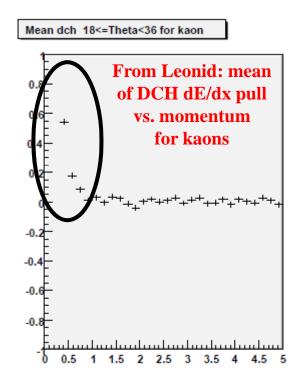
• Check of selector inputs: see Leonid's talk @ Frascati for details

http://agenda.infn.it/getFile.py/access?contribId=116&sessionId=33&resId=0&materialId=slides&confId=1165

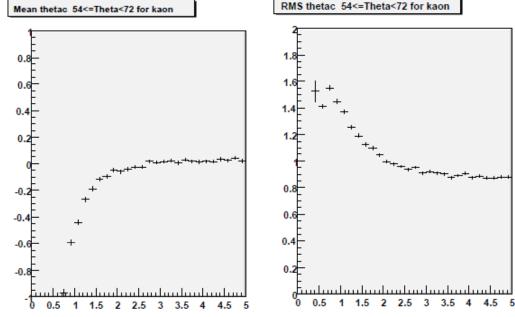


PidCalib application		
Before tuning cuts to get reasonable selectors all ingredients have to be checked, for this reason PidCalib application was developed.		
PidCalib use root – tuple generated by Single Track generator		
PidCalibApp.C	Inputs Output	main program 1) path to the root-tuple 2) Tree name root-file with all histoframs
PidCalib.C PidCalib.h		main class which make loop over Tracks and fill histograms
PidCalibConst.h		All main constants like number of momentum and theta bin are defined here
HistContainer.C HistContainer.h		Container of all histograms
PidCalibMakefile		make file make -f PidCalibMakefile
BuildPulls.C		use Output root-file to groduce .ps files with plots

- → Classes, macros and execution script to be put in SVN soon
- → Wiki documentation to be updated accordingly
- 'Quality' of selectors checked by comparing 'FastSim BaBar configuration' with the performances of actual selectors in BaBar.


Status of SVT contribution for PID

- SVT dE/dx code developed by John; feedback by Leonid et al.
- (dE/dx)_{expected} flawed for first implementation
 - → Cuts had to be retuned when SVT input was added to the LH selectors
 - This selector configuration was used for the November production
 - → Re-tuning mandatory before next production [true for any significant change]
- Problem fixed but strong θ -dependence found for $(dE/dx)_{measured}$
 - → see John's talk @ Frascati
 - Work in progress to fix this or account for this effect when computing (dE/dx)_{expected}
- Looking again at John's presentation: is there a bias at low momentum?
 - → Effect of momentum reconstruction? [See next slide]


Status of DCH contribution for PID

- DCH dE/dx code developed by Matteo; feedback by Leonid et al.
- Current implementation is quite satisfactory: pulls of mean ~0 and RMs ~1
- Bias at low momentum: $(dE/dx)_{measured} > (dE/dx)_{expected}$ mainly for kaons and protons
- Investigated by Matteo: dE/dx code OK, problem seems to come from a bias in the momentum reco, $p_{reco} > p_{true}$
- Two possible fixes for this problem:
 - improve the low momentum reconstruction
 - parameterize the bias and include it in the dE/dx simu.
- → Selector inputs to be re-checked after commit of a 'fix';
- → Need to retune LH selector cuts then.

Status of DRC contribution for PID

- Developments by Rolf et al.; feedback by Leonid et al.
- New simulation classes (PacSimpleDircModel and PacSimpleDircFitter) written at the end of Summer to fix features in the θ_C pull distributions coming from the fact that the full Kalman fit was OFF in the simulation to save execution time
 - → Default algorithm since then
- Pulls still not perfect though
 - Leonid's observations not confirmed by Rolf!?
 - \rightarrow To be sorted out
- Full Kalman fit to be turned ON for next production
 - → Dirc will switch back to PacDircFitter class
 - → Crosschecks needed
 - → Selectors to be retuned at the end

From Leonid: pull mean and RMS vs. momentum for K in a particular θ range: $54 \rightarrow 72$ degrees

News from the Forward PID

- DIRC-like TOF being simulated in Geant4 (Leonid et al., including Ukrainian folks)
 - Standalone simulation to test and improve the detector layout
 - → Should benefit to FastSim sometimes in the future
 - Simple layout put in Bruno with Eugenio's help to get background estimations
- Implementation of FARICH in FastSim in progress (see previous Nsk. presentation)
- Detector configurations w/o any forward PID detector give 'minimal' PID performances (= just dE/dx outside of the DRC acceptance)
- Table-based Kaon selector 100% efficient in the forward region can show the maximum 'physics' gain expected by a particular analysis
- → Effect of an actual PID selector should be in between
- Open question: how to link the LH selector cuts with the detector configuration?
 - → Should the likelihood ratio cuts depend on the tested configuration? [For now they don't...]
- Short time before next production and limited manpower: priorities to be identified

Other items to be discussed

- Not much feedback from users about the $e^{-/\gamma}$ selector
 - → Still very simple: cuts-based + using only a few calorimeter variables
 - → Comparison with table-based selector to be performed soon
- Backward calorimeter
 - Chih-hsiang showed at Frascati that it can't really be used to reconstruct π^0
 - But its timing performances (~100 ps!?) could make it a decent TOF detector to separate π and K which have mostly low momentum in the backward side
 - → Including it in the LH selectors would be interesting.
 - \rightarrow Question: is timing information ($t_{measured} + \sigma_t$) from bwd calo available in FastSim?
- Muon selector [Update from Marcello, this afternoon ©]
 - Goal for Feb. production is to tune the hadronic shower sim. to match the FullSim
 → Tails + energy dependence of the shower length
 - Tuning the selector should be easy when previous step is completed
- PID & Tagging
 - Are current PID lists suitable for (and correctly used by) the tagging algorithm? [There are 4 (5) 'tightness levels' for the LH π (K) selectors]
 - → Can contribute to this topic but not an expert...

Outlook

- PID in FastSim still evolving quickly
 - Improved (and more numerous) inputs from systems
 - Selectors (especially for hadrons) being worked on
 - New tools to debug/test/understand the selector performances
- Need to define a coherent path to prepare the February production
 - Systems commit their changes to SVN
 - 2 LH Selector inputs are checked and validated
 - 3 LH Selectors get tuned; the results of the optimization are committed to SVN

It's snowing in Paris area since this morning...