

New Antiproton production model and simulated rates

Giovanni De Felice

Supervised by: Robert Bernstein

1

Main points:

- Why this is important
- The new model: assumption and behavior in both LAB and CM frame
- Comparison with other 2 models based on parameterizations: Striganov's and Ying Wang's models
- Predictions

Why is this important? A background source!!!

Antiprotons can annihilate in the stopping target and create electrons

Why is this important? Very little data and no unique model!!!

Physics is:

Conserve charge and baryon number

But for:

 $p + p \rightarrow (p + \bar{p}) + p + p$

too complicated to be expressed in terms of QCD and people often used different parameterizations based on "Feynman x" or " p_T ". We think we need a more physical model!

Available data

- Mostly at high Energies (~ 100 GeV)
- Mostly from *pp* collisions
- Mostly at forward angles

What we need

- Energy "close" to the threshold (~ 10 GeV)
- *p*W (proton-Tungsten) collisions
- Interest in backward events (opposite to incoming proton)

Hard to think we can extrapolate!

Since there's no unique model, it is important to try different ones in order to estimate a systematic uncertainty on the background prediction. This is a standard method: take a range of models and compare predictions

The new proposed model

shaded regions are correlated normalization systematic From Robert Bernstein: Mu2e-doc-27801-v10

8/25/19

High p backward events are likely produced by interactions with multiple nucleons ("Fireball" model): studied at ITEP accelerator

Cumulative number (momentum, theta) : number of nucleons to be hit to produce an antiproton with that momentum at angle theta that conserves energy and momentum.

Look in the <u>center of mass</u>, calculate the invariant cross section there in terms of CM variables:

- If cumulative number =< 1: fit a single Gaussian
 - If cumulative number > 1: fit an Exponential

ASSUMPTION: No privileged direction for antiprotons produced in ordinary matter QCD interaction

Boost back to the lab frame

4

The new proposed model

Comparison at p = 10 Gev between fits. From Robert Bernstein: Mu2e-doc-27801-v10

Behavior of the invariant Xsec

Behavior and first comparisons

- An integration over the phase space (with p_{max} given by kinematics limits) gives us an idea:
- $\int_0^{2\pi} \int_0^{\pi} \int_0^{p_{max}} \left(E \frac{d^3 \sigma}{dp^3} \right)_E^1 p^2 \sin(\theta) dp \ d\theta \ d\varphi \approx 99:$
- Integrals performed with different methods, same result.
- Same for Striganov's parametrization gives us $\,pprox$ 30. (pprox 42 for Ying Wang)
- The overall behavior is similar. Let's now look at them bin by bin for:

 $\mathbf{p} \in [0,5] \quad \theta \in [0,\pi].$

In the LAB frame

Behaviors and first comparisons

Regions of interest

1. No reason to compare them over all phase space, there are kinematic limits:

2. The probability of an antiproton making an electron $\approx 10^{-5}$ In the entire experiment we expect 3.6 $x \ 10^{20}$ protons on target...

If: 3.6 $x \ 10^{20} * [Probability of making an antiproton] * <math>10^{-5} < 1$ reject the event

Quantitative bin by bin ratio

("steps" are an artifact of TH2 due to bin size 😠 not a concern)

Simulation towards the TS

Every events is required by GEANT to reach the entrance of the Transport Solenoid (at VD91*)

Number of simulated protons	Initial proton momentum	Pbar momentum generation	Pbar theta generation
1.3e8	Peaked around 8.89 GeV/c	Flat in CM	Flat in CM

*Really VD92 with no material between VD91 and 92, 1mm downstream

- θ_{Xsec} : with respect to the initial proton direction - θ_{mu2e} : with respect to the z axis in the mu2e frame

Simulation towards the TS

- Magnetic field
- Contributions in the unweighted $\cos(\theta)$ distributions: S
 - Scattering
 Target's 14° is included

Systematic and statistical uncertainties:

Rates per Proton on Target (POT)

Number of interacting protons

in Mu2e = 0.78 x 3.6e20

(From docdb 21872)

Conclusions and recap

- We now have a model to predict the antiproton background
- It has a reasonable physical basis in the CM Possible extensions
- If everything is correct the predicted rate are smaller than the previous one
- Uncertainties tell us that:
 - the model is distinguishable from the others
 - Mu2e needs absorbers strategically located inside the TS to reduce the antiprotons
 - This study will give us reliable estimates and the associated uncertainties that we need to design these absorbers
- Next step will be to propagate them inside the TS...

Thanks for the attention

-Many thanks to Robert Bernstein for plots and continuous help

-Many thanks to Giorgio Bellettini for the great opportunity

Backup Slides

Gaussian Model in CM:

if (trivectorMomentum.CosTheta() < 0.) {centerOfMassMomentum = -centerOfMassMomentum;}</pre>

cmAdj = TMath::Abs(centerOfMassMomentum/pStarMax + currentValue[2]);

This fits the data with a better chi2 than any other choice -> there must be something behind it

1st interpretation: include the Fermi motion (random motion):

...should average to zero 2nd interpretation: a fraction of the initial energy is lost in the nucleus before leaving it. The shift in energy is reasonable assuming minimum ionizing at nuclear density to within a factor of 2

$$Y = \sum_{i=0}^{entries} \alpha_i$$

with

$$\sigma_{\alpha_i}^2 = \sum_{p',q'} \frac{\partial \alpha_i}{\partial k_{p'}} \frac{\partial \alpha_i}{\partial k_{q'}} \cos k_{p'k_{q'}}$$

I can try now to estimate

$$\sigma_Y^2 = \sum_{p,q} \frac{\partial Y}{\partial k_p} \frac{\partial Y}{\partial k_q} \cos v_{k_p k_q} = \sum_{p,q} \frac{\partial \sum_i \alpha_i}{\partial k_p} \frac{\partial \sum_j \alpha_j}{\partial k_q} \cos v_{k_p k_q} =$$

$$= \sum_{p,q} \sum_{i=j} \frac{\partial \alpha_i}{\partial k_p} \frac{\partial \alpha_j}{\partial k_q} \cos v_{k_p k_q} + \sum_{p,q} \sum_{i \neq j} \frac{\partial \alpha_i}{\partial k_p} \frac{\partial \alpha_j}{\partial k_q} \cos v_{k_p k_q}$$
with
$$\hat{\sigma}_Y = \sum_i \sigma_{\alpha_i}$$

$$\hat{\sigma}_Y^2 = (\sum_i \sigma_{\alpha_i})^2 =$$

$$= \left(\sum_i \sqrt{\sum_{p',q'} \frac{\partial \alpha_i}{\partial k_{p'}} \frac{\partial \alpha_i}{\partial k_{q'}} \cos v_{k_{p'} k_{q'}}}\right)^2 =$$

$$= \sum_{p,q} \sum_{i=j} \frac{\partial \alpha_i}{\partial k_p} \frac{\partial \alpha_j}{\partial k_q} \cos v_{k_p k_q} + \sum_{i \neq j} \sqrt{\sum_{p',q'} \frac{\partial \alpha_i}{\partial k_{p'}} \frac{\partial \alpha_i}{\partial k_{q'}} \cos v_{k_{p'} k_{q'}}} \sqrt{\sum_{p',q'} \frac{\partial \alpha_j}{\partial k_{p'}} \frac{\partial \alpha_j}{\partial k_{q'}} \cos v_{k_{p'} k_{q'}}}}$$

- Statistical and systematic errors are comparable in the left region

- Systematic errors dominate in the right region