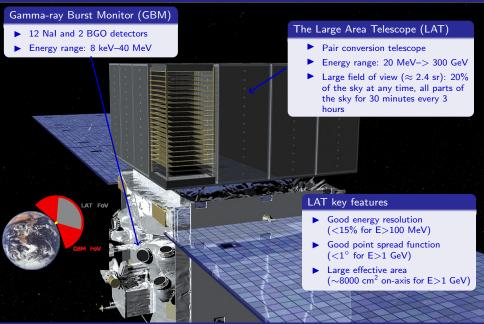
NEWS

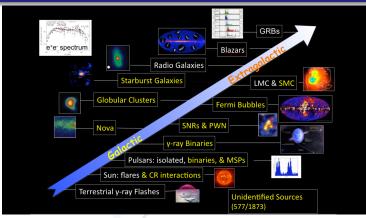
NEw WindowS on the universe and technological advancements from trilateral EU-US-Japan collaboration

WP4: Fermi-LAT data analysis

Melissa Pesce-Rollins


Annual General Meeting, Pisa, November 4-5, 2019

European Commission


Web site: risenews.df.unipi.it

THE *Fermi* SPACE TELESCOPE

M. Pesce-Rollins (INFN)

Fermi-LAT SCIENCE MENU

WP4: Focus on four topics

- Fermi-LAT source catalog (4FGL)
- WIMP dark matter searches
- Cosmic-Ray Electron science

Electromagnetic counterparts to gravitational wave events

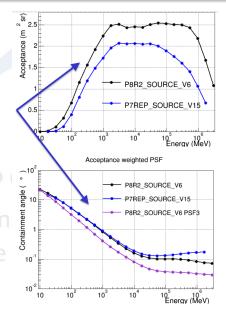
M. Pesce-Rollins (INFN)

The 4th Fermi Gamma-Ray Catalog

- WP4 team has actively participated in the catalog effort
- ▶ The 4th Fermi Gamma-ray Catalog (4FGL) released on Feb 25th
- The 4FGL comprises 5457 sources
 - With a ~66% association rate

Catalog		Data Interval (m)			Event Selection	Release Date
0FGL	0.2-100	3	205	37 (18%)	P6V1 DIFFUSE	Feb. 2009
1FGL	0.1-100	11	1451	630 (43%)	P6V3 DIFFUSE	Feb. 2010
2FGL	0.1-100	24	1873	649 (35%)	P7V6 SOURCE	Aug. 2011
3FGL	0.1-300	48	3033	992 (33%)	P7V15 SOURCE	Jan. 2015
4FGL	0.05-1000	96	~5500	~1800(33%)	P8 SOURCE	End of 2018
1FHL	10-500	36	511	65 (13%)	P7V6 CLEAN	Jun. 2013
2FHL	50-2000	80	360	48 (14%)	P8 SOURCE	Aug. 2015
3FHL	10-2000	84	1556	176 (11%)	P8 SOURCE	Mar. 2017

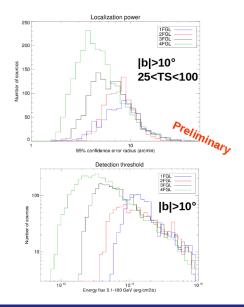
WHAT ARE CATALOGS GOOD FOR?


3FGL: 838 citations (NASA ADS)

- Predictions/optimization of future observatories: LHAASO, CTA, SKA...
- Sky model for data analysis
- Reference for studies on:
 - individual sources
 - source populations
 - MW analyses
- Source samples to investigate
 - Extragalactic Background Light
 - Extragalactic Diffuse Gamma-ray Background
- Exploration of new classes: stars, galaxy clusters...
- Nature of unassociated sources via follow-up observations
- Classification of unassociated sources

THE 4thFermi GAMMA-RAY SOURCE LIST

WP4 team has worked on the 4thFermi Gamma-Ray Source List (4FGL)

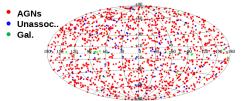

- Follow-up unassociated sources
- Deeper and better data/calibration
 - 3FGL was based on Pass7
 - 4FGL will use Pass8
- Update underlying interstellar emission model
- Look for variable sources
 - Provide yearly and bimonthly light curves
- WP4 objective complete by the end of 2019

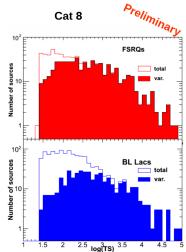
Source characterization

Improved localization (important for association) Median error radius at 25<TS<100 4.4 arcmin

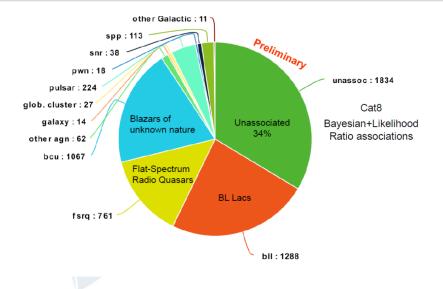
Detection the shold for extragalactic sources: energy flux ~2.10⁻¹² erg cm⁻²s⁻¹ (depends slightly on spectral shape)

Source variability

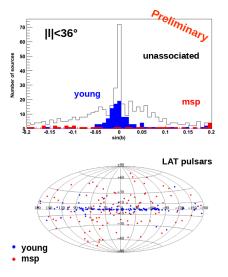

Two sets of lightcurves created for 4FGL:


- Yearly light curves (8 points)
 - variability index (χ² with 7 d.o.f., 99% confidence limit: 18.48)

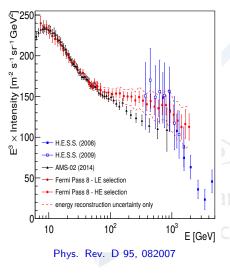
Ex: exercise on Cat8


1380 variables sources, 1267 AGNs, 21 Gal.,

- 92 unassociated
- fractional variability
- Bimonthy light curves (48 points)

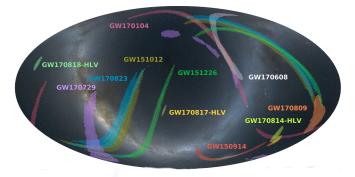


Association summary

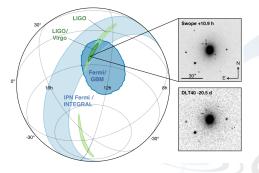


FEATURES OF GALACTIC UNASSOCIATED

- 229 unassociated sources located at ||<36° and 2°< |b| <7°
- Galactic origin → pulsars?
- Spectral hardness (median index Γ=2.5) compatible with young pulsars (Γ=2.4) but not with MSP (Γ=2.2)
- Latitude dispersion compatible with that of >10⁶ yr ATNF pulsars. Gamma-ray death line makes this possibility unlikely.
- No convincing evidence for other classes: LMXB, Be stars, O stars, X-ray stars, eclipsing binaries...
- Still there with new diffuse emission model but could still be related to missing diffuse component



COSMIC-RAY ELECTRON (CRE) SCIENCE


- Cosmic-ray e⁺ + e⁻ spectrum from 7 GeV to 2 TeV measured by *Fermi*-LAT
 - First space-based instrument to explore the region above 1 TeV
 - High-energy cutoff excluded up to 1.8 TeV at 95% CL
- Thanks to large amount of statistics we can now perform anisotropy searches to help constrain existence of local CRE sources
- WP4 team has contributed in the effort of the spectral and anisotropy studies of the CRE with *Fermi*-LAT
- WP4 objective completed

Following up on LIGO events

- September 14, 2015: first observation of gravitational waves, originating from a pair of merging black holes using the Advanced LIGO detectors.
- To date, 6 GW events announced by the LIGO/VIRGO Collaboration (LVC):
 - 5 BH- BH: GW150914, LVT151012, GW151226, GW170104, GW170814;
 - 1 NS-NS: GW170817;
- BH-BH mergers are not expected to produce EM radiation.
- NS-NS: predicted (and confirmed) to have EM radiation.

GW170817/GRB170817A

On August 17, 2017 LIGO and Virgo make first detection of gravitational waves produced by colliding neutron stars

The first time that a cosmic event has been viewed in both gravitational waves and light

- The LAT in the SAA at the time of the GBM trigger
- GRB 170817A in field of view after 1ks
- Set upper limit (0.1-1 GeV) of <4.5×10⁻¹⁰erg cm⁻²s⁻¹

PIPELINE FOR EM FOLLOW-UP TO GW EVENTS

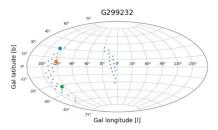
General strategy for Fermi-LAT searches at high-energy:

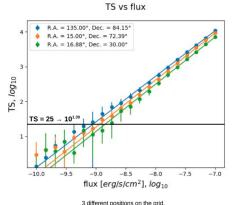
- Automated full sky searches of transients
- Specific searches in the LIGO contours
- Specific followups of detected counterparts

Cumulative coverage of the map as a function of time

- ▶ In all cases we reached 100% of the coverage within 8 ks
- Different pixels of the map enter and exit at different times
- We set up three different analysis: fixed time window, adaptive time window and LLE (at low energy)
- see: Ackermann et al. 2016 (GW150915), Racusin et al. 2017 (GW151226, LVT151012), Goldstein at al. 2017 (GW170114), Vianello et al. 2017 (Methods)

EM FOLLOW-UP TO GRAVITATIONAL WAVE EVENTS




- Large contribution from WP4 team in setting up pipeline to automatically perform dedicated analyses to search for electromagnetic counterparts to gravitational wave events in Fermi-LAT data
 - The pipeline is triggered by the arrival of a LIGO/Virgo Gamma-ray Coordinates Network (GCN)
- Team has also worked on sensitivity studies to improve estimates on flux upper limits
- ► WP4 objective more than 60% complete

EM FOLLOW-UP TO GRAVITATIONAL WAVE EVENTS: SENSITIVITY STUDIES

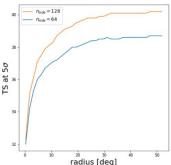
For each pixel of the grid:

- · TS is an increasing function of the GRB flux;
- · error bars: TS is averaged over the seeds;
- flux so that the GRB is detected with TS = 25.

Check:

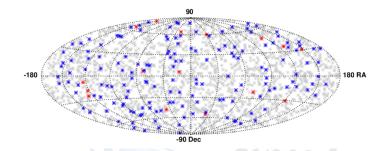
• the sensitivity decreases near the galactic disk \rightarrow consistent with higher galactic background.

News Annual General Meeting

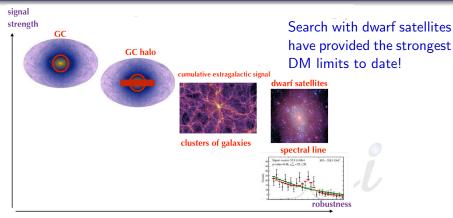

EM FOLLOW-UP TO GRAVITATIONAL WAVE EVENTS: TRIAL FACTORS

Threshold of the detection TS_{thr}:

- TS_{thr} scales with the dimension of the area (both n_{sirle});
- curve steep for small areas:
 → TS_{thr} increases quickly;
- limit the search to small areas in order to have the lowest TS_{thr}:


 \rightarrow determine a quantitative criterion to define the optimal region of the search;

→ in case of non-detection, increase the area.


Threshold of the detection

THE LAT 2nd GRB CATALOG

- ► The LAT 2nd GRB catalog is finalized
- The catalog contains 186 GRBs, and is the most complete analysis of high-energy emission from GRBs to date
- WP4 team searched for LAT counterparts to over 4000 low-energy triggers
 - Imperative for the GW follow-up work
 - Work performed during WP4 secondments to Tokyo University

WIMP DARK MATTER SEARCHES

[adapted from: H.-S. Zechlin]

- Fermi-LAT team has performed several dark matter searches over a wide range of astrophysical targets CODE
- ▶ WP4 team is contributing in the development of the analysis framework
 - Applying to new targets such as the dwarf galaxies found by DES

WP4 USE OF SECONDMENTS

Completed

- INFN: 6.5 months
- ▶ OCK: 11 months
- KTH: 1 month
- Dalarna: 1 month
- ► HOG: 0.1 month
- Total: 19.6 months

Planned in 2020

- INFN: 3.5 months
- OCK: 3 months
- KTH: 3 months
- Total: 9.5 months

Objectives

- Variability studies in blazars
- Sensitivity studies for the likelihood analysis of GW pipeline
- Work on the 2nd Fermi-LAT GRB catalog
 - Important for the GW follow-up pipeline
- Working on Fermi-LAT analysis for DM detection
 - Developing and testing new analysis techniques

SUMMARY

Deliverables

- ▶ 4.1 Analysis package 4th Fermi Gamma-ray source List (4FGL)
- 4.2 Automatic pipeline for gamma-ray follow-up of gravitational wave triggers
- 4.3 Fermi Data Legacy Archive

Status of the deliverables

- 4.1 is nearing completion with the 4FGL posted to archive in Feb 2019 and planned for publication by the end of the year
- 4.2 is more than 60% complete
 - pipeline is running smoothly for O3 of LIGO/Virgo
 - ~ 2 months of secondments used in summer of 2019 to work on completing the pipeline and the related analysis tools

4.3 work started

Spare slides

Gamma-ray Space Telescope

THE LAT SIGNAL SEARCHES

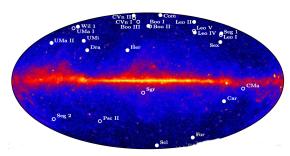
The custom signal searches implemented for the follow-up of EM to GW events, fixed time and adaptive time windows

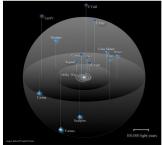
• The fixed time window search:

- Search over a set of fixed time windows around the LIGO trigger
- For each time window, select all pixels that were observable by the LAT within the LIGO localization map
- Perform un-binned likelihood in an 8° radius Rol

Adaptive time window search

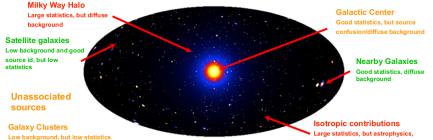
- Optimize the time window for the analysis based on when the pixel becomes observable by the LAT
- For each pixel select only the interval that contains the GW trigger time, or the one immediately after
- Perform un-binned likelihood analysis for each pixel
- We also have several standard automatic signal searches up and running since launch
 - automatically run both of the custom analysis every time we receive a LIGO/VIRGO GCN


DARK MATTER PIPELINE


WP4 team has contributed to the dark matter pipeline effort:

- Almost ten years of Fermi-LAT data has been analyzed and combined searches for DM from the LMC, SMC, M31, M33 and dSphs have been performed
 - No significant emission from DM has been found
- Future steps of the analysis
 - add to the target list clusters and the Galactic center
- Plan to publish a paper with the analysis, including likelihood profiles for individual targets and for the combined searches
- Results can be used by the community to test their particular DM models
- Results presented at the 8th International Fermi Symposium
- WP4 objective nearly completed

DARK MATTER SEARCHES IN DSPH GALAXIES

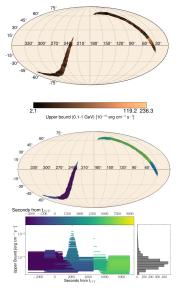

- dSph Galaxies are the cleanest target for DM searches:
 - DM-dominated (1000:1)
 - 10s to 1000s of stars
 - Mostly old stars
 - Few gamma-ray emitters (pulsars, SNRs)
 - Little gas content
 - − often high latitude → low diffuse background
 - nearby (<250 kpc)
 - many! (50+) → allows for joint analyses

DARK MATTER PIPELINE

- DMcat project: perform a combined search for Dark Matter (DM) from multiple targets.
- We plan to release the results in a format that can be used by the community to perform their own DM searches.

Galactic diffuse background

Targets already implemented Targets will be considered in the future Targets we will probably not consider


Spectral Lines

Little or no astrophysical uncertainties, good source id, but low sensitivity because of expected small branching ratio

M. Pesce-Rollins (INFN)

News Annual General Meeting

Spare slides

Racusin et al. 2017, ApJ, 835, 1

- Fermi-LAT is continuously observing the entire sky
- Covering localization probability maps of gravitational wave events within hours of their detections
- In the case of a detection of an EM counterpart, the LAT could substantially reduce the localization uncertainty
- Facilitating follow-ups at other
 wavelengths
- Six papers published so far