

The EDM in the g-2 experiment

Becky Chislett NEWS General Meeting November 4-5 2019

The power of EDM measurements has recently been demonstrated by the latest electron EDM measurement

The EDM in the g-2 experiment

If an EDM is present the spin equation is modified to:

Dominant term

UCL

An EDM tilts the precession plane towards the centre of the ring

Produces a vertical oscillation 90 degrees out of phase :

$$\omega_{a\eta} = \sqrt{\omega_a^2 + \omega_\eta^2}$$

$$\delta = \tan^{-1} \left(\frac{\eta \beta}{2a} \right)$$

The vertical angle

[•]UCL

The tilt of the precession plane is determined by the size of the EDM

$$\delta = \tan^{-1} \left(\frac{\omega_{\eta}}{\omega_{a}} \right) = \tan^{-1} \left(\frac{\eta \beta}{2a_{\mu}} \right)$$

However, the precession angle is reduced due to the Lorentz boost :

The measured angle

[•]UCL

- The positrons are not always emitted along the spin direction
- Detector acceptance effects

Simulation suggests that this reduces the amplitude to 10%

The decay asymmetry

[•]UCL

E_{max}~3.1 GeV

The BNL measurement

^AUCL

- Indirectly by comparing the measured value of ω_a to the SM prediction
- **Directly** by looking for a tilt in the precession plane

For the direct method 3 techniques were used at BNL:

- Phase as a function of vertical position
- Vertical position oscillation as a function of time
- Vertical decay angle oscillation as a function of time

Vertical decay angle uncertainties

^AUCL

Look for an oscillation in the vertical decay angle of the positrons

Plot the number oscillation as a function of time modulo the precession period

Minimises period disturbances at other frequencies

Use the period calculated from the $\omega_a\,\text{fit}$

Fit to calculate the phase :

$$N(t) = e^{-t/\tau_e} \left(N_0 + W \cos(\omega t + \Phi) \right)$$

Plot the average vertical decay angle as a function of time modulo the precession period

Fit (fix phase from above):

$$\theta(t) = M + A_{\mu} \cos(\omega t + \Phi) + A_{EDM} \sin(\omega t + \Phi)$$

EDM oscillation comes in $\pi/2$ out of phase from the MDM

Vertical decay angle uncertainties

Main systematic uncertainties to be considered for this method:

Radial Magnetic field:

Would cause a tilt in the precession plane

Detector acceptance:

Horizontal CBO oscillations

Phase or period errors:

Could mix the number oscillation into the EDM phase

E821:

Oscillation amplitude : $(-0.1 \pm 4.4) \times 10^{-6}$ rad

 \rightarrow d_µ = (-0.04 ± 1.6) x 10⁻¹⁹ e•cm

 \rightarrow $|d_{\mu}| < 3.2 \times 10^{-19} \text{ e-cm} (95\% \text{ C.L})$

Dominated by the statistical error

Systematic error		plane tilt	False EDM gener- ated 10^{-19} $(e \cdot cm)$
Radial field	0.13	0.04	0.045
Acceptance coupling	0.3	0.09	0.1
Horizontal CBO	0.3	0.09	0.1
Number oscillation	0.01	0.003	0.0034
phase fit			
Precession period	0.01	0.003	0.0034
Totals	0.44	0.13	0.14

The measurement at FNAL

[±]UCL

The tracking detectors in the experiment at FNAL should allow for a large improvement in the limit from the vertical angle EDM analysis at BNL

Expect O(1000) times better statistics than at BNL

Reduce error by 1 order of magnitude quickly, approaching 2 orders of magnitude by the end

But need careful control of the systematic errors

Beam reconstruction

UCL

The tracks are extrapolated back to the point of radial tangency as an approximation of the decay position

Vertical angle measurements

truth - reco vertical position

χ^2 / ndf 3.89/7 3500 3336 ± 29.0 Constant -0.01641 ± 0.03703 Mean 3000 Sigma 3.936 ± 0.056 2500 2000 1500 1000 500 -10 0 10 20 0 _40 -20 0 ∆y[mm] 30 -30 40 truth - reco vertical angle χ^2 / ndf 5.273/7 Constant 4567 ± 33.7 4500 -0.0007337 ± 0.0003268 Mean 4000 Sigma 0.04014 ± 0.00050 3500 3000 2500 2000 1500 1000 500 -0.5 -0.2 0.1 0.2 0.3 0.5 -0.4 -0.3 -0.1 0 0.4 ∆ vertical angle [rad]

UCL

EDM blinding

- The clock blinding used for the g-2 measurement is not sufficient to blind the EDM
- Instead generate an EDM centred around 3.5 times the BNL limit
- This produces a vertical oscillation out of phase with g-2, much larger than a potential EDM signal
- Once the analysis is complete unblind

UCL

Beam oscillations - radial

UCL

The beam oscillates in the storage ring both radially and vertically

These beam oscillations affect the acceptance over time which can look like a vertical oscillation The trackers allow for a full understanding of the beam motion which helps to improve the systematics

Beam oscillations - vertical

The beam oscillates in the storage ring both radially and vertically

UCL

The vertical oscillations are smaller and at a higher frequency but can still feed into the measurement

Radial field

^AUCL

A radial field also tilts the precession plane, just like the EDM signal

The surface coils are used to null the radial field

Measuring the radial field

The vertical position of the beam is affected by both the quads and the radial field

- A radial field causes the muons to experience a vertical force
- The quads focus vertically providing a restoring force
 - The vertical position of the beam depends on both of these Vary the quad settings and look at how the vertical position changes

$$\langle y \rangle \sim \left(\frac{R_0}{n}\right) \left(\frac{\langle B_r \rangle}{B_0}\right)$$

¹UCL

Measuring the radial field

^AUCL

Longitudinal field

[±]UCL

A longitudinal field induces a vertical oscillation in phase with the g-2 oscillation

Measuring the longitudinal field is the same as the EDM analysis but in phase with g-2 :

- Allows the analysis tools to be developed
- The measurement is needed for the spin precession analysis

Can also look out of phase with the CBO to assess the sensitivity

Conclusions

- The g-2 experiment at Fermilab is expected to improve upon the current limit on the muon EDM by at least one, approaching two orders of magnitude
- Enough data has already been collected to improve upon the BNL limit
 - We collect about the same number of tracks in every run!
 - Blinding is crucial before looking at any data
- The systematic errors will become more important for the Fermilab analysis
 - A method for constraining the radial field using the quads looks promising
 - The movements of the beam can be reconstructed using the trackers
- The analysis of the data is currently underway

Measuring the EDM – phase

DETECTION

[•]UCL Consider the phase variation as a function of vertical position DECAY CONE Decays that strike higher in the detector have to travel further φ PRECESSION PLANE Outward decays tend to (y), Fitted Phase vs. Vertical Position travel further up or down 200 Chi2 / ndf = 87.15 / 8 (mrad) φ₀ = -338.2 ± 2.705 E₁ = -0.214 =-0.214 ± 0.1216 due to longer path length 100 G = 6.086 ± 0.1216 --0 8644 + 0 4431 0 Nent = 462968; Nent = 4629682 Chi2 / ndf = 389.4 / 396 N = 1.158e+04 ± 15 Lifetime = 2.1e+06 ± 2.5e+06 W = 3724± 11 The fitted phase phig2 = 1.918 ± 0.00 $N(t) = e^{-t/\tau_e} \left(N_0 + W \operatorname{cons}_{1400} \omega t + \Phi \right)$ -100 depends on the -200 vertical position -300 500 1000 1500 2000 2500 3000 3500 4000 Time modulo precession period [ns] -400 ⁴⁰ y (⁶⁰_{mm}) -60 -40 -20 0 20 A non zero EDM tips the precession plane (y), Fitted Phase vs. Vertical Position • More outward decays at the top (mrad) Chi2 / ndf = 13.91 / 8 $\phi_0 = -335.9 \pm 5.948$ E = 1.829 ± 0.2573 More inward decays at the bottom 100 $G^{\circ} = 6.006 \pm 0.2573$ $v^{\phi} = -0.06236 + 0.948$ • \rightarrow suppresses the phase difference at the bottom of the calorimeter

 $\Phi(y) = p_0 + p_1(y - p_2) + |p_3(y - p_2)|$ -200 -300 Phase changes not Up-down asymmetry -400 related to EDM -60 -40 -20 **EDM** 0

26

20

y (mm)

40

Phase uncertainties

The systematic uncertainities are similar to the vertical position measurement

E821: d_{μ} = (-0.48 ± 1.3) x 10⁻¹⁹ e·cm

Again systematics dominated, although statistics play a larger role