Mu2e Calorimeter electronics

F. Spinella INFN Pisa

NEWS General Meeting November 4-5 2019

Talk overview

- Calorimeter electronics scheme
- Front End electronics
- DIRAC spec, architecture and design
- DIRAC qualification tests
- Dirac cooling
- Module 0
- Slice test
- Dirac V2

Calorimeter design

Photo-sensor

UV-extended SiPMs

Csl crystals

- Crystals arranged in 2 disks (inner/outer radius 37.4 cm / 66 cm, separation between disks 75 cm)
- 1 crystal coupled to 2 UVextended SiPMs (14x20 mm² area) \rightarrow 2696 electronic channels
- SiPM packed in a parallel arrangement of 2 groups of 3 cells biased in series
- DAQ crates located inside the cryostat to limit the number of pass-through connectors

Very intense particle flux expected in the calorimeter

We need *high-sampling rate* digitizers to resolve pile-up

Pile Up Example (Front End output)

Which requirements? (1)

- Digitization requirements = function (calorimeter requirements)
- Particle-Id:
 - \circ $\sigma_t < 500 \text{ ps}$ @ 100 MeV
 - $\circ~\sigma_{\scriptscriptstyle E}/E$ <10% @ 100 MeV
- We require the additional contribution due to the digitization procedure itself to be:
 - $\circ \sigma_t < 200 \, ps @ 100 \, MeV$
- Analog input waveform and calorimeter digitization scheme:
 - Sampling frequency and number of ADC readout bits impact time and energy resolution
 - o Thresholds impact the total data throughput and Energy resolution

Which requirements? (2)

- Simulation results show that a digitizer with:
 - o Sampling frequency of 200 MHz
 - ADC with *12 bits resolution*

Matches the calorimeter requirements on time and energy resolution

	150 MHz	200 MHz	250 MHz
8 bits	470 ps	440 ps	440 ps
10 bits	370 ps	250 ps	250 ps
12 bits	300 ps	170 ps	170 ps

Time resolution versus sampling frequency and ADC-bits

	150 MHz	200 MHz	250 MHz
8 bits	9.8 MeV	8.0 MeV	7.8 MeV
10 bits	6.5 MeV	5.5 MeV	5.5 MeV
12 bits	6.2 MeV	5.5 MeV	5.5 MeV

Energy resolution versus sampling frequency and ADC-bits

- *Time* is reconstructed by fitting the leading edge
- Time resolution for Conversion Electrons (~105 MeV)
- *Energy* is reconstructed from the total number of ADC counts
- Energy resolution (FWHM/2.35) for Conversion Electrons (~105 MeV)

Which requirements? (3)

- System located inside the cryostat \rightarrow Harsh Environment:
 - Magnetic field of 1 T and 10⁻⁴ Torr vacuum
 - Total Ionizing Dose (TID):
 - > 0.2 krad/yr (from simulation)
 - > 12 Safety factor (requested from collaboration)
 - ➢ 5 years data taking
 - > TID 12 krad
 - *Neutron flux* 5x10¹⁰ 1 MeV (Si)/yr (from simulation)
- Mechanical constraints \rightarrow DAQ crates located inside the cryostat:
 - \circ Limited space \rightarrow 20 ADC channels/board
 - o Limited access for maintenance \rightarrow *Highly Reliable Design* mandatory

Crate x10

Front End Electronics

- FE boards connected to SiPMs to provide:
 - Amplification
 - Local linear regulation of the bias voltage
 - Monitoring of current and temperature
 - o Test pulse

• Mezzanine boards:

- O FE boards controlled by 1
 Mezzanine Board (MB) → SiPM LV and
 HV distributed by an ARM controller
- Differential signals from 20 FE boards sent to MB and then to 1 DIRAC
- DIRAC:
 - sampling, processing and data transmission to the Mu2e DAQ

FEE (X20)

CRATE + DIRAC +MB X20 (10 + 10)

DIRAC v1 architecture

DIRAC v1 design

PCB specs:

- Material: FR408-HR
- Layers: 16
- Dimensions: 233x165 mm
- Thickness: 2.127 mm
- Differencial lines: 100Ω
- Single ended lines: 50Ω

After an intense campaign of tests:

- ADC: ADS4229 (Texas Instruments®)
- FPGA (SoC): SM2150T (Microsemi®)
- DC-DC: LTM8033 (Linear Thecnologies[®])
- LDO: MIC69502 (Micrel®)
- Jitter Cleaner: LMK04828 (Texas Instruments[®])
- Optical Transceiver: RJ-5G-SX (Cotsworks[®])

DIRAC qualification tests

Several test campaigns were performed:

- Total Ionizing Dose (TID) \rightarrow requested 12 krad:
 - YELBE @HZDR
 - γ from Bremsstrahlung (0<E<14MeV)</p>
 - > Extimated dose ≈ 20 krad/h @ 600 μ A
 - Single components test
 - o Calliope @ENEA
 - > Co60 source
 - Dose in function of distance: Max 2krad/h, requested 1krad/h
 - Full board test
- Magnetic Field (B):
 - o LASA @INFN Milano (1T)
- Neutron irradiation test
 - o FNG @INFN
 - Total neutron flux of 1.2 x10^12 n 1 MeV (Si) / cm^2
 - ➤ Total neutron flux of 6x10^11 n 1 MeV (Si) / cm^2
 - DCDC test

YELBE facility

- Photons is produced per Bremsstrahlung by the electron beam hitting a niobium foil in the accelerator hall
- Nominal beam conditions: 17 MeV electrons, 600uA, 12.4 um niobium radiator foil
- Simulated *dose rate ≈ 18.6 krad/h*
- Active dosimetry used to confirm simulated dose rate

Calliope facility

- Gamma rays at 1.17 and 1.33 MeV from *Co60*.
- 3.7x10^15 Bq of activity.
- Isotropic source, flux scales with r^2

FNG facility

Frascati Neutron Generator (FNG) is a linear electrostatic accelerator in which up to 1 mA D+ ions are accelerated onto a Tritium target

- Up to 10^11 14 MeV neutrons/s
- almost *isotropic source*, flux scales with r^2
- calibrated at 3% level using alpha particles

$D+T \rightarrow \alpha + n$

DIRAC: TID test results

• Input waveform \rightarrow 4.5@10MHz, readout waveform:

LTM8033 and MIC69502 Vout(rad;t)

Conclusions:

- 41 h beam time
- Nominal Dose Rate ≈ 1krad/h
- TID ≈ 41krad
- No evidence of broken components up to 35 krad
- After 41 krad SM2 ARM does not restart after power cycle
- DCDC converters voltage increase: ≈ 20% @ 41 krad, no recover if no beam CHANGE IN V2
- LDO small increase, fast recover if no beam

Tests in magnetic field results

Test conditions:

- View X (parallel to B)
- Vin 28V, Vout 2.5V
- Variable load
- Switching frequency

Efficiency quite low (still acceptable), higher if Vin lower

Test conditions:

- View X (parallel to B)
- Vin 28V, Vout 3.3V
- Variable load
- Constant frequency

Vout constant

LTM 8033 Neutrons tests

Test conditions:

- Neutrons over DCDC up to 1.2E12 1MeV-eq-Neutrons/cm2
- DCDC Vout (loaded with 1 ohm resistor):
 - o Measured before irradiation
 - \circ $\,$ Measured after the test $\,$

Negligible change ...

DIRAC cooling (1)

- General cooling requirements:
 - Maximum temperatures must not be exceed during operation \rightarrow the max electronic components temperature is set to half specified values \rightarrow set max temp = 60 °C
 - The *cooling system* must be *robust and reliable*
 - o Leak less cooling system
 - o All component must be *compatible with magnetic field*
 - o All parts must have a low outgassing rate for *operating in vacuum*
 - o Components must be *radiation hard*
- A compact crate with 9 slots designed \rightarrow house the boards and provides their cooling
 - o The cooling channels are milled on the lateral walls of the crate and sealed with a welded covers

DIRAC cooling (2)

- DIRAC estimated power 20W
- 8 DIRAC/crate + MB → 200 W/crate •

Top cover Junction

- Vacuum environment → the *heat generated* from the • components is *removed* through:
 - *Thermal plate* (Cu) pre-formed (radiator)
 - Thermal Interface Material (TIM): thermal grease Ο
 - *Bridge resistors* (Beryllium Oxide) 0
 - Card Lok Retainer (CALMARK[®] Series 265) 0
- The electronic components modeled in three regions: top cover, ٠ junction and bottom cover
- TIM allows the thermal contact between the top cover and the ٠ thermal plate TIM

Bridge resistors

DIRAC + Cu Thermal plate

Module-0

- Large scale EMC prototype:
 - o 51 CsI crystals
 - o 102 Mu2e SiPMs
 - \circ 102 FEE boards
 - $\circ~$ 1 DIRAC board handle 20 channels
- Mechanics and cooling system similar to the final ones (vacuum and low T)

Goals:

- Validate the acquisition chain \rightarrow *Slice Test*
- Test integration and assembly procedures

Slice test

- Calorimeter electronics readout chain test using cosmic rays
- Module-0 equipped with FE boards
- SIPMs cooled @18°C (external chiller)
- 1 DIRAC v1 (16 channels) + 1 MB
- Firmware \rightarrow Preliminary version
- External trigger \rightarrow Cosmic ray coincidence

Slice test firmware

DAQ software:

- Written in python and C++, based on ROOT libraries
- Transforms the received binary data in a standard rootopla containing:
 - The waveform
 - o Reconstructed quantities like pedestals, charge and time
- Online monitor

Firmware:

- Initializes ADCs and Jitter Cleaner
- Synchronizes clock phases
- Digitizes 20 channels @ 200 MHz (DDR)
- Stores 250 samples for channel, with an initial buffer of 60 before the trigger (1.2 μs) without zero suppression
- External trigger \rightarrow 2 plastic scintillator paddles coupled PMTs placed over and below the Module-0 (outside the vessel)
- Binary data output through UART interface @ 1 Mbs (event rate 5Hz enough for cosmics)

Slice test results

An example of the resulting waveform (Fig.A) and the distribution of the peak amplitude versus the integrated charge (Fig.B) is shown

Fig.B: Energy distribution deposited by cosmic rays (ADC counts)

DIRAC v2

Changes due to radiation resistance:

- FPGA: Microsemi PolarFire[®] MPF300 (FGC1152, 300K LE, 512 user IO, 20.6 Mbits RAM) was M2S150
- Optical tranceiver: CERN VTRX (radhard up to 1Mrad) was Cotswork RJ-5G-SX
- DCDC converters: Texas Instruments[®] LMZM33606 was Linear Technology LTM[®]8033

Changes due to changes in specifications:

- Clock chain encoded in the data
- Readout point-to-point (only one optical driver)
- CAN BUS
- DDR3 bigger

DIRAC V2 status:

- TID, neutrons and B tests performed to validate all new components
- Single channel test to verify MPF300/ADS4229 compatibility
- Prototype should arrive in November

DIRAC v2 design

DIRAC v2 PCB

- Design @ INFN Pisa: COMPLETED
- Routing @ CERN: COMPLETED
- PCBs under PRODUCTION
- The boards assembled (2 prototypes) will be ready in November

Conclusions

- A waveform digitizer designed to operate in hostile environment has been presented
- The DIRAC is designed to sample @200 MHz differential signals coming from the FEE of the DAQ of the electromagnetic calorimeter of the Mu2e experiment
- The presence of vacuum (10⁻⁴ Torr), high magnetic fields (1T) and radiation (Nonlonizing Energy Loss 5x10¹⁰ n/cm² @ 1 MeV_{eq} (Si)/y and Total lonizing Dose 12 Krad) makes the environment particularly harsh and the design of the board very challenging
- A slice test on Module 0 has been performed and it validated the acquisition chain
- A new version V2 has been designed to strenghten the radiation hadrness