Beam Monitor status

Milano + Trento + Perugia

Generale FOOT meeting 04/12/19

Outlook

- Calibration test @ Trento: results and paper
- Iterative and Legendre hit selection algorithms
- New track reconstruction based on chi2 minimization and ROOT Minuit2
- Update on BM @ GSI with the electronic setup
- To do list

BM calibration with P @ Trento

Contents

	1	Intr	oduction	1
	2	Mat	erials and Methods	3
		2.1	Experimental setup	3
5		2.2	Experimental Plan	7
		2.3	Data selection	8
	3	Res	ults	8
		3.1	Space-time relations	9
		3.2	Efficiency	10
10		3.3	Resolution	11
	4	Disc	cussion	11

- Calibration test performed with Margherita and 4 layers of Microstrip Silicon detectors (MSD), together with the Perugia Team.
- Several noisy and dead strips (up to 4 points on X coordinate and 3 on Y coordinate)
- Multiple Coulomb scattering evaluation ongoing
- Technical paper in preparation (NIM)

Collected data: 200 kevt.: 80 MeV, 0° tilt 100 kevt.: 228 MeV, 0° tilt 100 kevt.: 80 MeV, 5° tilt 100 kevt.: 228 MeV, 5° tilt 100 kevt: 228 MeV, 10° tilt

Preliminary results: Space-time rel

- Space time relations evaluated with the BM time and the MSD tracks extrapolated to the BM sense wire position
- Similar Space-time rel. as in FIRST, even if it was evaluated with C @ 80 MeV/u and with different BM working point (HV, pressure, gas)
- Difference between 80 and 228 MeV protons probably given by the different mean free path between two ionisation clusters
- MC Garfield++ simulation studies ongoing

Efficiency

- Hit detection efficiency evaluated as fraction of events with one or two hit detected on even (odd) planes, when three single hits on odd (even) planes have been scored.
- HV efficiency scan previously measured compatible with FIRST measurement
- MSD track extrapolated to the BM cells and check if there's a hit or not.
- The BM is inefficient at the cell border, where the Electric field is weaker
- However the BM cells are staggered: the cell border of one layer correspond to the cell center on the next layer

Resolution

Method 1:

- Using only the BM hits and tracks, the resolution can be evaluated as the residual between the BM fitted track and the hits measurement.
- The result is in a good agreement with the performances measured in FIRST
- Depends on the BM reconstruction algorithm and selection criteria.

Method 2:

- Evaluate the residual using the MSD tracks and the BM hits.
- No dependence on BM reconstruction, but MSD resolution and Multiple Coulomb scattering have to be evaluated properly

Multiple Coulomb Scattering

- The Multiple scattering given by the MSDs (300 μm of Si + 50 μm Kapton) is relevant.
- From FLUKA simulation of a pencil beam:

	Std. Dev. [cm] 80 MeV	Std. Dev. [cm] 228 MeV
MSD1	0.076	0.059
MSD2	0.3	0.13
MSD3	0.38	0.17
MSD4	0.46	0.2

- The evaluation of the MCS on data is ongoing
- Possibility to minimize it using the hits only from the first two MSD planes
- It could be an issue in FOOT? (MSD with 150µm of Si + Vertex + IT)

BM hit selection: iterative algorithm

Iterative algorithm:

- Start taking into account only the planes with a single hit
- Evaluate the 4 possible tracks with the two farther hits
- Evaluate the residuals of the other hits, select the best possible track and associate hits with low residual.
- After the reconstruction, look for possible hit to be rejected
- If the reconstruction does not converge, evaluate all possible hit combinations

BM hit selection: Legendre transform

Legendre Transform:

- Used for hit selection and first guess of the track parameters
- Avoid the iteration on different possible tracks due to the previous hit selection algorithm
- Works properly with the MC, but it needs to be optimized for the GSI electronic setup data.
- Need further analysis to be compared with the old iterative algorithm

New BM reconstruction

New chi2 minimization method based on ROOT Minuit2 package

- Reduce the number of iteration and the computation time
- Better time and reconstruction performances
- Less dependence on the initial track seed
- Minuit2 have to be enabled in the ROOT build dir:

cmake path/to/source -Dminuit2=ON -Drpath=ON
cmake --build .

BM trigger @ GSI

Start Counter jitter: 12.5 ns 10 ns BM TDC 25 ns

• From the arrival of the particle to the measurement of the BM cell signal there are different passages:

1)A particle cross the Start Counter.

- 2)The majority give a trigger signal with a jitter of 12.5 ns (measured by the WD).
- 3)The signal is sampled by the DAQ and it is spread among all the subdetector with a jitter of ~10 ns (Not measured).
- 4)The trigger give the start for the data transfer to the TDC with a jitter of 25 ns (measured by TDC).

BM trigger @ GSI

- The trigger signal from the SC to the DAQ is sampled every ~10 ns, resulting in a shift of the BM hits time measurement
- This is evident comparing the BM raw time measurements of a channel with the emulsion setup and the electronic setup.
- This issue must be fixed for the next electronic data taking (late 2020)
- For the GSI data it can be partially recovered in the track reconstruction

Gsi data recovery

	BM process contribution	Cpu time (1000 evts)
Default:	1.6 %	139050
With t0 shift:	12 %	155990

- It is possible to shift the t0 for all the hit of an event to take into account the SC-DAQ jitter
- At the moment it is made simply reconstructing a track for each t0 step and selecting the best track
- Good recovery
- Not optimized
- Additional computational time
- Try to use multithread process

To do list

Calibration test @ Trento

- Garfield++ simulation toolkit to check the Space-time relations
- Finalize the study on the Multiple Coulomb Scattering and the MSD track reconstruction and selection criteria.
- Evaluate the BM resolution performances using the MSD tracks and taking into account the MCS effect
- Evaluate the sense wire shifts with the MSD tracks

Reconstruction and software improvement

• Optimization of the Legendre transform and analysis with the old iterative method

GSI data

- Optimize and speed up the t0 shift reconstruction
- Analysis with vertex detector tracks

GSI emulsion setup

15