

NUCLEAR EMULSIONS: STATUS OF THE ANALYSIS

A. Alexandrov, B. Capone, A. Di Crescenzo, G. De Lellis, <u>G. Galati</u>, A. Iuliano, A. Lauria, M. C. Montesi, A. Pastore, V. Tioukov

Università di Napoli "Federico II", INFN Napoli, INFN Bari

SCANNING STATUS

TARGET B	Oxygen 200 MeV/n	Oxygen 400 MeV/n
Carbon	GSI1	GSI3
Polyethylene	GSI2	GSI4

- ➡ 520 emulsions exposed
- ➡ Scanning started on May 7 2019
- ➡ GSI2: completed (120 emulsions)
- ➡ GSI1: completed (120 emulsions)
- ➡ Total: 240/520

- scanning has been
 interrupted for urgent
 work in lab for more than
 one month
- now we have a completely new scanning laboratory
- we resumed the scanning work one week ago

REMINDER OF DETECTOR STRUCTURE

	Oxygen 200 MeV/n
S1	C2H4 (30x2mm) + 30 emu
S2	Emu (36)
S 3	Lexan (10x1mm)+10emu
S4	W (7x0.5mm)+7emu
S 5	W (7x0.9mm)+7emu
S 6	Pb (20x1mm)+20emu
S7	Pb (9x2mm)+10emu

FROM SCANNING TO RECONSTRUCTION

1. Scanning

2. LINKING MICROTRACKS INTO BASETRACKS

3. Alignment Between Plates

4. TRACKING RECONSTRUCTION 5. VERTEXING RECONSTRUCTION

GSI2 ANALYSIS STATUS

	Scanning	Linking	Alignment	Tracking	Vertexing
S1	~	~	~	~	~
S2	~	~	~	~	/
S3	~	~	~	~	/
S 4	~	~	~	to be done	/
S5	~	~	~	to be done	/
S6	~	~	~	to be done	/
S 7	~	~	~	to be done	/

OXYGENS ON EMULSION #1

OXYGENS ON EMULSION #1

Theta<0.04

-0.04

-0.03

-0.02

-0.01

0.01

0

0.02

0.03

0.04

s.eTY

MONTECARLO SIMULATION

- Beam: 10k Oxygen @200 MeV/n, Rectangular Shape 3x3, Isotropic distribution
- Same detector structure (but **no thermal treatment** simulated in S2)
- No cosmic rays or background were simulated
- Montecarlo Simulation was converted into the raw data files format and underwent the tracking reconstruction with official software used in OPERA (FEDRA)
- **Flat** efficiency was set at 90% efficiency as a temporary value (see later)
- 4 mrad smearing was applied on angles (data driven)
- No misalignment was simulated

END OF THE TRACK

END OF THE TRACK

END OF THE TRACK

END OF THE TRACK

- A dedicated tracking should be done for each section
- Necessity to implement an algorithm to merge the tracks from different tracking

END OF THE TRACK

- A dedicated tracking should be done for each section
- Necessity to implement an algorithm to merge the tracks from different tracking

EXAMPLES OF TRACKING ISSUES

EFFICIENCY PLATE BY PLATE (ALL TRACKS)

Plate Id	Nseg	Nseg expected	Eff_plate all tracks	Eff_plate OXY
1	6426	6426	100.00%	100.00%
2	6357	7469	85.11%	85.23%
3	12798	13526	94.62%	94.44%
4	13409	14878	90.13%	90.00%
5	14337	15609	91.85%	91.72%
6	14132	16105	87.75%	87.72%
7	13067	16487	79.26%	78.39%
8	15048	16625	90.51%	90.45%
9	15194	17017	89.29%	89.18%
10	15719	17245	91.15%	91.24%
11	15570	17355	89.71%	89.42%
12	15583	17342	89.86%	89.66%
13	14492	17068	84.91%	84.98%
14	14811	16831	88.00%	87.64%
15	13348	16651	80.16%	77.90%
I	$\mathrm{Eff}_{plate} =$	$\frac{\text{Numbe}}{\text{Numb}}$	r of baset	sing track

Plate Id	Nseg	Nseg expected	Eff_plate all tracks	Eff_plate OXY
16	14741	16711	88.21%	87.80%
17	12406	16016	77.46%	75.82%
18	13589	16185	83.96%	81.85%
19	14569	16956	85.92%	85.20%
20	14129	16797	84.12%	83.37%
21	10631	15761	67.45%	59.35%
22	12550	15155	82.81%	80.26%
23	10681	12833	83.23%	80.26%
24	9037	10230	88.34%	88.53%
25	7311	8038	90.96%	90.68%
26	6886	7279	94.60%	96.16%
27	5525	6393	86.42%	78.18%
28	5880	6362	92.42%	93.85%
29	5839	6262	93.24%	93.26%
30	5686	6208	91.59%	92.34%

Efficiency can be further improved Optimization still on-going

EFFICIENCY PLATE BY PLATE (ALL TRACKS)

Plate Id	Nseg	Nseg expected	Eff_plate all tracks	Eff_plate OXY
1	6426	6426	100.00%	100.00%
2	6357	7469	85.11%	85.23%
3	12798	13526	94.62%	94.44%
4	13409	14878	90.13%	90.00%
5	14337	15609	91.85%	91.72%
6	14132	16105	87.75%	87.72%
7	13067	16487	79.26%	78.39%
8	15048	16625	90.51%	90.45%
9	15194	17017	89.29%	89.18%
10	15719	17245	91.15%	91.24%
11	15570	17355	89.71%	89.42%
12	15583	17342	89.86%	89.66%
13	14492	17068	84.91%	84.98%
14	14811	16831	88.00%	87.64%
15	13348	16651	80.16%	77.90%
E	$\Sigma ff_{plate} =$	- Numbe Numb	er of baset	sing track

Plate Id	Nseg	Nseg expected	Eff_plate all tracks	Eff_plate OXY
16	14741	16711	88.21%	87.80%
17	12406	16016	77.46%	75.82%
18	13589	16185	83.96%	81.85%
19	14569	16956	85.92%	85.20%
20	14129	16797	84.12%	83.37%
21	10631	15761	67.45%	59.35%
22	12550	15155	82.81%	80.26%
23	10681	12833	83.23%	80.26%
24	9037	10230	88.34%	88.53%
25	7311	8038	90.96%	90.68%
26	6886	7279	94.60%	96.16%
27	5525	6393	86.42%	78.18%
28	5880	6362	92.42%	93.85%
29	5839	6262	93.24%	93.26%
30	5686	6208	91.59%	92.34%

Efficiency can be further improved Optimization still on-going

s.eX:(s.eY+s.ePID*60000) {t.eFlag>=0.&&t.eProb>0.001}

OXYGEN SEGMENTS PLATE BY PLATE

Segment with theta<0.04 belonging to tracks with at least 4 segments

MC NORMALIZED TO DATA

VERTICES RECONSTRUCTION

X-Y vertex

- Simulation beam: (3x3)cm
- Data spot: (2.5x2.5)cm

• The angle of simulated Oxygen beam should have a larger smearing

VERTICES CHARACTERISTICS

DAUGHTERS CHARACTERISTICS

• Particles' charge identification: see next talk by B. Capone

OXYGEN ION TRACK IN EMULSION

OXYGEN ION TRACK IN EMULSION

AVERAGE IMAGE

NEXT STEPS

- Scanning of GSI3 and GSI4 emulsions
- Linking and alignment of GSI1 plates already started
- Improve scanning efficiency: new approach for images acquisition dedicated to high ionizing particles
- Improve tracking efficiency: the optimization of the algorithms used in OPERA is not sufficient to face all the issues faced. New algorithms are needed.
- Visual inspection of reconstructed vertices to better understand interactions characteristics and validate the analysis
- Mass identification by momentum (MCS) and range measurements in S3...S7