

Analysis update on GSI and CNAO data

Riccardo Ridolfi

on behalf of the Bologna group *riccardo.ridolfi@bo.infn.it* VII FOOT Collaboration Meeting - 4 December 2019

Outline

Analysis update on GSI and CNAO data Riccardo Ridolfi

GSI data

- Calibration with 400 MeV/u Oxygen ions
- Evaluation of TOF resolution
- Checking reconstructed charge of Oxygen in calibration run
- Analysis of fragmentation runs

Outline

Analysis update on GSI and CNAO data Riccardo Ridolfi

GSI data

- Calibration with 400 MeV/u Oxygen ions
- Evaluation of TOF resolution
- Checking reconstructed charge of Oxygen in calibration run
- Analysis of fragmentation runs

CNAO data

- Calibration with Carbon and proton beams
- Z reconstruction on GSI data with CNAO calibration
- Measurement of effective attenuation length of a bar
- Discussion on calibration strategy

GSI data: how to handle

Calibration run (nr. 2242) ~70k events, physics runs (nr. 2239-40-41) ~60k events in total

 S_{B}

Calibration of bars

Analysis update on GSI and CNAO data Riccardo Ridolfi

Calibration of bars

TOF resolution

Analysis update on GSI and CNAO data Riccardo Ridolfi

As there is no measurement of the delay due to cables and electronics, the **offset** is evaluated using the time spent by the Oxygen to travel from SC to TW (**223.1 cm** in **~10.43 ns**)

Checking charge of GSI Oxygen

From Bethe-Bloch formula

 $\frac{dE}{dx} \propto \frac{z^2}{\beta^2}$

Riccardo Ridolfi

Fragmentation runs

Analysis update on GSI and CNAO data Riccardo Ridolfi

Get rid of **ghosts** looking at two quantities:

$$\frac{\Delta S}{S_{mean}} = \frac{S_{oriz} - S_{vert}}{\left(\frac{S_{oriz} + S_{vert}}{2}\right)} \qquad \frac{\Delta T}{T_{mean}} = \frac{T_{oriz} - T_{vert}}{\left(\frac{T_{oriz} + T_{vert}}{2}\right)}$$

Two hits in two layers tagged as **good combination** if:

Spotted fragments in FOOT

CNAO data: ntuple format

Analysis update on GSI and CNAO data Riccardo Ridolfi

there is no **tw_layer**, **tw_bar** is a vector<int> indicating if a bar is fired or not

/home/F00T-T3/amengarelli/CNA0_ntuple/*_1_ntu*

3 Carbon beams: **115**, **260**, **400** MeV/u 1 proton beam: **60** MeV

Every .root file is the sum of all runs at the same energy

Layout of hit bars

C@115

Layout of hit bars

C@260

Analysis update on GSI and CNAO data Riccardo Ridolfi

C@400

10/23

Why those holes?

Analysis update on GSI and CNAO data Riccardo Ridolfi

11/23

Too **low values** wrt other bars, we decided not to calibrate them

Light vs energy: Birks' Law

Analysis update on GSI and CNAO data Riccardo Ridolfi

For **organic scintillators**, the relation between the emitted light and the energy deposited by an ionizing particle is **not linear**

From FLUKA simulation

ΔE_{mc} (MeV)	P @ 60	C @400	C @260	C @115
Front	3.37 ± 0.16	33.4 ± 1.2	42.2 ± 1.1	74.1±1.1
Rear	3.54 ± 0.17	33.5 ± 1.2	42.5 ± 1.1	77.4 ± 1.1

12/23

Example of calibration

Adding GSI Oxygen to Birks

Adding GSI Oxygen to Birks

ΔE_{mc}

20

ΔE_{mc}

Analysis update on GSI and CNAO data Riccardo Ridolfi

			Calibration Parameters without Oxygen	with Oxygen			
	Slab	p_a	$p_b \cdot 10^2$	χ^2	p_a	$p_b \cdot 10^2$	χ^2
Some Oxygen points	slies on the $\frac{1}{1}$	1.97 ± 0.14	1.13 ± 0.20	0.7			
eenne exygen pointe		2.10 ± 0.15	1.13 ± 0.20	0.7			
curve some not -> vi	isihle from \mathbf{v}^{2-3}	1.92 ± 0.13	1.13 ± 0.20	0.6			
		2.27 ± 0.15	1.17 ± 0.19	0.6			
values	5	2.27 ± 0.15	1.19 ± 0.19	0.5			
values	6	2.13 ± 0.15	1.18 ± 0.19	0.5			
	7	2.02 ± 0.14	1.19 ± 0.20	0.5			
	9	2.06 ± 0.16	1.19 ± 0.24	0.3	2.06 ± 0.16	1.19 ± 0.24	0.3
Oversen vesterht is low		1.94 ± 0.14	1.22 ± 0.21	0.7	1.92 ± 0.14	1.25 ± 0.21	4.1
Uxygen weight is io		1.88 ± 0.13	1.22 ± 0.20	0.9	1.86 ± 0.13	1.23 ± 0.21	4.4
	20	2.27 ± 0.14	1.34 ± 0.22	1.7			
Carbon due to lower	statistics \rightarrow $\frac{21}{22}$	2.20 ± 0.15	1.30 ± 0.22	1.2			
69. 1.	22 22	2.30 ± 0.10 2.14 \pm 0.15	1.24 ± 0.21 1.21 ± 0.21	0.8			
fit results with or w/	o Uxvaen are $\frac{20}{24}$	2.14 ± 0.15 2.33 ± 0.27	1.21 ± 0.21 1.45 ± 0.37	0.0			
	25	2.53 ± 0.27 1 71 ± 0 13	1.45 ± 0.37 1 16 + 0 22	0.0			
the same	20	2.18 ± 0.15	1.10 ± 0.22 1.18 ± 0.21	0.2 0.2			
	20	2.13 ± 0.15 2.27 ± 0.16	1.10 ± 0.21 1.20 ± 0.21	0.2 0.2			
	28	2.21 ± 0.10 2.20 ± 0.16	1.20 ± 0.21 1.20 ± 0.21	0.2	2.20 ± 0.16	1.20 ± 0.21	0.2
	29	2.05 ± 0.17	1.14 ± 0.25	0.1	2.05 ± 0.17	1.13 ± 0.25	0.1
Collinguing state 0	Collimation olds 17 30	2.13 ± 0.18	1.19 ± 0.26	0.2	2.14 ± 0.18	1.24 ± 0.26	0.9
Cambration sido a		2.10 ± 0.17	1.22 ± 0.24	0.2	2.10 ± 0.17	1.24 ± 0.25	0.5
100 100	32	2.28 ± 0.16	1.17 ± 0.20	0.4	2.28 ± 0.16	1.18 ± 0.20	0.5
E E	33	1.91 ± 0.14	1.16 ± 0.21	0.3	1.91 ± 0.14	1.16 ± 0.21	0.4
80-	34	2.29 ± 0.19	1.41 ± 0.30	1.1	2.32 ± 0.19	1.56 ± 0.30	2.9
	36	1.94 ± 0.15	1.11 ± 0.23	0.6	1.92 ± 0.16	1.16 ± 0.24	5.9
	37	1.98 ± 0.15	1.18 ± 0.23	0.5	1.98 ± 0.16	1.29 ± 0.25	7.9
	28	2.21 ± 0.17	1.27 ± 0.23	0.8	2.20 ± 0.17	1.35 ± 0.24	6.8

Z reconstruction of GSI fragments

Analysis update on GSI and CNAO data Riccardo Ridolfi

Systematic **shift** on Z reconstruction under investigation → despite low statistics FOOT is able to **identify** all produced **fragments**

Evaluation of attenuation length

Analysis update on GSI and CNAO data Riccardo Ridolfi

The light attenuation length **is not** the attenuation along the bar (losses, reflections etc...)

We expect a **lower value** for the attenuation length in a 40x2x0.3 cm bar

PROPERTIES	EJ-200	EJ-204	EJ-208	EJ-212		
Light Output (% Anthracene)	64	68	60	65		
Scintillation Efficiency (photons/1 MeV e ⁻)	10,000	10,400	9,200	10,000		
Wavelength of Maximum Emission (nm)	425	408	435	423		
Light Attenuation Length (cm)	380	160	400	250		
Rise Time (ns)	0.9	0.7	1.0	0.9		
Decay Time (ns)	2.1	1.8	3.3	2.4		
Pulse Width, FWHM (ns)	2.5	2.2	4.2	2.7		
No. of H Atoms per cm ³ (x10 ²²)	5.17	5.15	5.17	5.17		
No. of C Atoms per cm ³ (x10 ²²)	4.69	4.68	4.69	4.69		
No. of Electrons per cm ³ (x10 ²³)	3.33	3.33	3.33	3.33		
Density (g/cm ³)	1.023	1.023	1.023	1.023		
Polymer Base		Polyvinyltoluene				
Refractive Index EJ ELJEN Softening Point		1.58				
		75°C				
Vapor Pressure	Vacuum-compatible					
Coefficient of Linear Expansion	7.8 x 10 ⁻⁵ below 67°C					
Light Output vs. Temperature	At 60°C, L.O. = 95% of that at 20°C No change from 20°C to -60°					
Temperature Range -20°C to 60°C						

The following plots are fitted with:

 $f_l(x) = A_l \exp\left(-\frac{L/2 + x}{\lambda}\right), \quad f_r(x) = A_r \exp\left(-\frac{L/2 - x}{\lambda}\right)$

from Development and characterization of a Δ E-TOF detector prototype for the FOOT experiment paper by FOOT collaboration

17/23

Evaluation of attenuation length

Analysis update on GSI and CNAO data Riccardo Ridolfi

We choose two bars (9 and 30) with most of statistics and we evaluate the **attenuation length,** results from **both bars** are reported

C@115, 260, 400 MeV/u and p@60 MeV

Results for bar 9

Analysis update on GSI and CNAO data Riccardo Ridolfi

	C@115MeV/u	C@260MeV/u	C@400MeV/u	p@60MeV
λ_{left} [cm]	43±1.4	45.1±2.1	45.5±2.4	42.8±4.1
λ_{right} [cm]	37.4±1.1	39.9±1.6	38.9±1.7	36.5±2.8

Systematic **difference** between λ left and right, maybe due to a different coupling between bar and left/right SiPM? Results are compatible over different energies!

Results for bar 30

Analysis update on GSI and CNAO data Riccardo Ridolfi

	C@115MeV/u	C@260MeV/u	C@400MeV/u	p@60MeV
λ_{left} [cm]	43.0±1.6	42.1±2.2	42.0±2.3	41.9±4.5
λ_{right} [cm]	43.5±1.6	43.4±2.1	42.2±2.3	39.2±3.8

No systematic **difference** between λ left and right, results are compatible over different energies!

Behaviour of √QLQR

Analysis update on GSI and CNAO data Riccardo Ridolfi

22/23

Behaviour of \sqrt{QLQR}

Conclusions

Analysis update on GSI and CNAO data Riccardo Ridolfi

GSI data:

- dE/dx resolution ~4%
- TOF resolution (89±1) ps, below 100 ps
- Resolution on Z reconstruction ~2%
- First fragments in FOOT

CNAO data:

- Calibration of bars with Birks' law
- Z reconstruction on GSI data, systematic shift observed → Oxygen underestimation, difference between GSI and CNAO setup?
- Attenuation length is consistent over different energies
- Observed systematic λ difference in bar 9 \rightarrow bar-SiPM coupling?
- Signal √Q_LQ_R shows position dependency, up to 10% difference from the centre to the end of the bar → more precise calibration needed ("pixel by pixel")?

Thank for your attention!

Calibration using CNAO and GSI Data: Slab 34 - 38

(a) Fascio di ioni carbonio a 115 MeV/u

(b) Fascio di ioni carbonio a 260 MeV/u

(c) Fascio di ioni carbonio a 400 MeV/u

(d) Fascio di protoni a 60 MeV