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Thermal History of the Universe

Phase transitions are important events in the evolution of the Universe

» the SM predicts two of them (the two phases are smoothly connected (cross over))

no strong breaking of thermal equilibrium
~ _ no distinctive experimental signatures
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Thermal History of the Universe

Additional phase transitions could be present due to new-physics

well motivated example:
» Peccel-Quinn symmetry breaking connected to QCD axion

LDR, Panico, Redi, Tesi, 2020
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first-order EVWPhT

New physics may provide first order phase transitions

e a barrier in the potential may be
generated from tree-level
deformations, thermal or quantum
effects

e the field tunnels from false to true
Mminimum at 7'=7T, < T.

o the transition proceeds through
bubble nucleation

» significant breaking of thermal equilibrium (relevant for baryogenesis)

» Interesting experimental sighatures (eg. gravitational waves)



Bubble nucleation

Bubble dynamics can produce gravitational waves and baryogenesys

GW from sound waves

+ / and turbulence in the plasma

GW from N
bubble collision #

baryogenesys



How to get a first-order PhT

. “Single field” transitions

150 L

» barrier coming from:

50

e guantum corrections due to additional fields

e thermal effects

. “Multiple field” transitions 14

» barrier can be present already at tree-level and T=0

» minima In different directions in field space S




Extended Higgs sectors



New Physics
in the Higgs sector

et e DM candidate

phase transitions

\
Collider - cosmology synergy
S i & Deviations in Higgs
couplings + new states

testable at testable at
Sfuture interferometers Suture colliders

EW Baryogenesis



Key features of a first-order PhT

® the nucleation temperature 7, R
equilibrium
e the strength a [ quantities
® the (inverse) time duration of the transition f/H  ~
* the speed of the bubble wall v, non-equilibrium
I quantities
* the thickness of the bubble wall L, _

Gravitational waves and the efficiency of the EW-baryogenesis crucially depend on them

EWBG Is typically efficient for slowly-moving walls. Recent results show efficiency also
for fast-moving walls [Dorsch, Huber, Konstandin, 2021]

GWs are maximised for fast-moving walls
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GW from a first-order PhT

First-order PhTs produce stochastic background of gravitational waves

m, = 250 GeV, \, = 2

De Curtis, LDR, Panico, 2019

for the EWPhT the peak frequency is
within the range of future experiments

Gowling, Hindmarsh, 2019
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e wall speed has a strong effect on the
shape of the power spectrum

e wall speed will be the best
determined parameter
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Dynamics of the bubble wall

the wall moves towards the symmetric phase
€4—-

broken phase

System setup: N ¢ =v
scalar field + plasma particles e
—
=
symmetric phase /
p=0 X

e [he bubble wall drives plasma out of equilibrium
® |nteractions between plasma and wall front produce a friction

e | the friction and pressure inside the bubble balance we can realise
a steady state regime (terminal velocity reached)

in the following we assume a planar wall and a steady state regime



Dynamics of the bubble wall

Coupled system of equations. For each particle species f(p,z) = f,(p,z) + of(p, z)

® Scalar field equation

® Boltzmann equation
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» External force from space dependent mass drives the plasma out of

equilibrium

m(z) = 5

mo

NG

» Collisions between particles in the plasma tend to restore equilibrium

Clf, + of]



The Boltzmann equation

p., (m?) _ o
(Eaz_ T 0pz>f=ff[f] = —G[f]

Assumptions on the plasma:

* High temperature, weakly coupled plasma
» Higgs varying scale L, > g~ ! inverse of momentum transfer in the plasma

* Only2 — 2 processes in the plasma are considered (assumption valid for the
computation of the collision integral)

* Plasma made of two different kind of species
» Jop quark and W/Z bosons (main contributions)
»  All the other SM particles (background, assumed to be in equilibrium)




LHS - the Liouville operator

Liouville operator is a derivative along flow paths

p,df
E dz

2
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ap Z f _>

E * 2FE

14 broken phase

S

p, reduced after
crossing the wall

articl cted
- 7 particles reflecte -_—
from the wall &

p, augmented after

crossing the wall

» L

E, p, and c = \/pz2 + m?*(z) are conserved along the flow paths



RHS - the collision term

The collision term Is the hard part of the Boltzmann equation

4N 27T)52Ek2Ep/2Ek/
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for 2 <> 2 processes

Boltzmann equation is an integro-differential equation

Typical setup:

o o process M |?
 friction contributions only from the top quark o 128 ut
e background is not perturbed B - m2 T (v m)p
: : : 2 2
« Infrared divergences regularised by thermal tg — tg —128g54 >4 — + 96g;7 > L; .
Masses 37 (u=mg) (8= mg)
2 2
: . s STt u
e only leading-log terms are considered tq — tq 160g.

*(t— mé)2




Previous approaches to the Boltzmann equation

To deal with the collision term, previous approaches made assumptions
on the shape of the perturbation in momentum space

’ :lL’”d appro><|.mat|on |:|:| . [1] Moore, Prokopec, 1995
* Extended fluid approximation [2] [2] Dorsch, Huber, Konstandin, 2022

: 3] Laurent, Cline, 2020
o New formalism [3] 3l

[1] and [2] dubbed “old formalism™ (OF) in the following

Il the d, 0f term neglected

2l Boltzmann equation integrated with a set of (not unique) welights

Alternative methods

* Expansion of df in a polynomial basis [4] [4] Laurent, Cline, 2022
° Holographic approach [5] [5] Bigazzi, Caddeo, Canneti, Cotrone



Full solution to the Boltzmann equation

We propose a new method to solve the Boltzmann equation
without imposing any ansatz for o f

De Curtis, LDR, Guiggiani, Gil Muyor, Panico, 2022

Key features

* No term In the Boltzmann equation is neglected
* New approach to deal with collision integrals

* [terative routine where convergence Is achieved In few steps



Integrated friction
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Conclusions and outlook

Conclusions:

» Fully quantitative solution without any ansatz on o f
» Necessary for a reliable computation of v,

» Quantitative and qualitative differences with previous approaches
mainly forv,, 2 0.2

Future perspectives:
» Inclusion of the massive W/Z bosons and massless background species
= Inclusion of 1 — 2 and 2 — 1 plasma processes in the collision integrals
= going beyond leading-log

= determination of v, (by solving Boltzmann + scalar EOM)




