Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Tsallis statistics and QCD thermodynamics

Eugenio Megías¹* A. Andrade II², A. Deppman³, A. Gammal³, D.P. Menezes⁴, T. Nunes⁴, V.S. Timóteo⁵

¹Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Spain. ²Universidade Estadual de Santa Cruz, Brazil. ³Instituto de Física, Universidade de São Paulo, Brazil. ⁴Universidade Federal de Santa Catarina, Brazil. ⁵Universidade Estadual de Campinas, Brazil. *Supported by the Ramón y Cajal Program of the Spanish MICIN.

International Workshop on QCD - Theory and Experiment (QCD@Work 2022) June 30, 2022, Lecce, Italy.

Based on: E. Andrade II, A.Deppman, A. Gammal, E.M., D.P.Menezes, T. Nunes, V.S. Timóteo, PRD101 (2020) 034019 and 054022; MDPI Physics 2 (2020) 455 and Physica A 585 (2022). Other references: E.M. D.P.Menezes, A.Deppman, Physica A421 (2015) 15;

A.Deppman, PRD93 (2016) 054001; A.Deppman, E.M., D.P.Menezes,

T.Frederico, Entropy 20 (2018) 633.

Eugenio Megías

Introduction

- Tsallis statistics
- Tsallis statistics and QCD
- Fractals and Self-Similarity
- Thermofractals
- Scales in YM theory
- Bose-Einstein condensation and Tsallis statistics
- Applications of Tsallis statistics
- Conclusions

QGP: QCD and its applications

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistic and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Thermodynamical approach

- R. Hagedorn: thermodynamical approach to High Energy Collisions exponential distributions of energy and momentum exponential hadron mass spectrum
 Hadron Resonance Gas models, conf./deconf. phase-transition
 → but disagrees from experimental data (^{d²N}/_{dp⊥dy} ≈ e^{-p⊥/T})
 - ightarrow when using Tsallis statistics ightarrow power-law distribution ightarrow
 - \longrightarrow the agreement is perfect (in many orders of magnitude)

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistic: and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Tsallis Statistics

Tsallis statistics
 generalization of Boltzmann-Gibbs (BG)
 statistics

$$S_q \equiv -k_B \sum_i p_i^q \ln_q p_i$$
, $\ln_q(p) \equiv rac{p^{1-q}-1}{1-q} \left[igoplus_{q o 1} \log(p)
ight]$

•A consequence is that the entropy of the system is non-additive. For two independent systems A and B [C.Tsallis, J.Stat.Phys. 52 '98].

$$S_{A+B} = S_A + S_B + k_B^{-1}(1-q)S_AS_B$$
,

where the entropic index q measures the degree of non-extensivity.
 q-expotential and q-logarithm functions:

 $e_q^{(\pm)}(x) = [1\pm(q-1)x]^{\pm 1/(q-1)}, \quad \log_q^{(\pm)}(x) = \pm (x^{\pm(q-1)}-1)/(q-1),$ \bigcirc Occupation number:

$$n_q^{(\pm)}(x) = \frac{1}{\left(e_q^{(\pm)}(\beta(\varepsilon_p - \mu)) - \xi\right)^{1 \pm (q-1)}} \qquad \left[\underset{q \to 1}{\xrightarrow{}} \frac{1}{e^{\beta(\varepsilon_p - \mu)} - \xi} \right] \,,$$

and $x = \beta(\varepsilon_p - \mu)$, $\beta \equiv (k_B T)^{-1}$, particle energy $\varepsilon_p = \sqrt{p^2 + m^2}$, with μ the chemical potential, $\xi = \pm 1$ for bosons/fermions.

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YN theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Hadron production in heavy ion collisions

[A. Deppman, E.M., D.P.Menezes, T. Nunes, in preparation]

• Occupation number of a single particle:

$$n_q^{(\pm)}(x) = \frac{1}{\left(e_q^{(\pm)}(\beta(\varepsilon-\mu)) - \xi\right)^{1\pm(q-1)}} \qquad \left[\underset{q \to 1}{\longrightarrow} \frac{1}{e^{\beta(\varepsilon-\mu)} - \xi} \right]$$

• Density of hadron species in an ideal gas of massive particles:

$$\rho_{i} \equiv \frac{\langle N_{i} \rangle}{V} = \frac{g_{i}}{2\pi^{2}} \left[\int_{0}^{\rho_{i\star}} dp \, p^{2} n_{q}^{(-)}(x_{i}) + \int_{\rho_{i\star}}^{\infty} dp \, p^{2} n_{q}^{(+)}(x_{i}) \right]$$

where

$$\mathbf{x}_i \equiv \beta \left(\varepsilon_i - \sum_{\mathbf{a}} \mu_{\mathbf{a}} q_{\mathbf{a}i}
ight) , \quad \varepsilon_i \equiv \sqrt{p^2 + m_i^2} , \quad \sum_{q} \mu_{\mathbf{a}} q_{\mathbf{a}i} \equiv \mu_u u_i + \mu_d d_i + \mu_s s_i .$$

and $p_{i\star} > 0$ if $\sum_a \mu_a q_{ai} > m_i$.

- In Au+Au collisions: $B = 2 \times 197$, $I_3 = -39$, S = 0.
- Fit to ratios of particle abundances. Experimental values (STAR '07'): $\bar{p}/p = 0.65 \pm 0.07$, $\bar{p}/\pi^- = 0.08 \pm 0.01$, $\pi^-/\pi^+ = 1.00 \pm 0.02$, · · ·

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YN theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Hadron production in heavy ion collisions

Best fit in $(q, \mu_B, T) \rightarrow q \simeq 1.16$ $\chi^2/dof = 0.76$ $\mu_B = 52 \text{ MeV}, T = 58 \text{ MeV}$ Radius = 49.6 fm³

See also [D.P.Menezes et al., PRC76 '07] for q = 1.

Ratio	Model	Experimental (STAR '2007')
\bar{p}/p	0.65473	0.65(7)
\bar{p}/π^{-}	0.06393	0.08(1)
π^-/π^+	1.02009	1.00(2)
K^-/K^+	0.82771	0.88(5)
K^-/π^-	0.16900	0.149(20)
$\overline{\Lambda}^0/\Lambda^0$	0.76906	0.77(7)
Ξ-/Ξ-	0.87540	0.82(8)
K ⁰ */h ⁻	0.07145	0.060(17)
\overline{K}^{0*}/h^{-}	0.06217	0.058(17)

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YN theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistic

Conclusions

p_T distribution in pp collisions

Extended Hagedorn theory to non extensive statistics: A.Deppman, Physica A 391 '12

Use of Tsallis statistics:

$$rac{d^2N}{dp_{\perp}\,dy} = gVrac{p_{\perp}m_{\perp}}{(2\pi)^2}e_q^{(+)}\left(-rac{m_{\perp}}{T}
ight)$$

L.Marques, E.Andrade-II, A.Deppman, PRD 87 (2013) 114022 Experimental value $q=1.14\pm0.01$

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistic

Conclusions

Effective hadron mass spectrum

Density of hadrons:

 $\rho(m) = \rho_o \cdot \left[1 + (q-1)m/T_H\right]^{1/(q-1)}$

Obtained in Non-Extensive Self-Consistent Thermodynamics.

A.Deppman, Physica A 391 (2012) 6380

Power-law distributions

Cumulative number: $N(m) = \int_0^m d\tilde{m}\rho(\tilde{m})$

L.Marques, E.Andrade-II, A.Deppman, PRD 87 (2013) 114022

Hagedorn 1968: $\rho(m) = \rho_o \cdot e^{m/T_H}$

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Tsallis Statistics and QCD Thermodynamics

• Grand-canonical partition function for a non-extensive ideal quantum gas is [EM, A.Deppman, D.P.Menezes, Physica A421 '15]

$$\log Z_q(V, T, \mu) = -\xi V \int \frac{d^3 p}{(2\pi)^3} \sum_{r=\pm} \Theta(rx) \log_q^{(-r)} \left(\frac{e_q^{(r)}(x) - \xi}{e_q^{(r)}(x)} \right),$$

• $e_q^{(\pm)}(x) \xrightarrow[q \to 1]{} \exp(x)$ and $\log_q^{(\pm)}(x) \xrightarrow[q \to 1]{} \log(x) \longrightarrow$ This result reduces to the BG statistics in the limit $q \to 1$.

● The thermodynamics of QCD in the confined phase can be studied within the Hadron Resonance Gas approach → Physical observables in terms of hadronic states [Hagedorn, Lec.Not.Phys.221 '85].

Partition function given by

$$\log Z_q(V, T, \{\mu\}) = \sum_{i \in \text{hadrons}} \log Z_q(V, T, \mu_i).$$

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistic

Conclusions

QCD Thermodynamics

- Energy density $\longrightarrow \quad \varepsilon \equiv \frac{\langle E \rangle}{V} = -\frac{1}{V} \frac{\partial}{\partial \beta} \log Z_q \Big|_{\mu_B} + \frac{1}{V} \frac{\mu_B}{\beta} \frac{\partial}{\partial \mu_B} \log Z_q \Big|_{\beta}$.
- Pressure $\rightarrow P = \frac{1}{\beta} \frac{\partial}{\partial V} \log Z_q.$
 - Entropy $\rightarrow S = -\beta^2 \frac{\partial}{\partial \beta} \left(\frac{\log Z_q}{\beta} \right) \Big|_{\mu_B}.$
- Baryon density $\rightarrow \rho_B \equiv \frac{\langle B \rangle}{V} = \frac{1}{3V} \left(\langle N_{\text{quarks}} \rangle \langle N_{\text{antiquarks}} \rangle \right)$.

 $q \uparrow \longrightarrow$ Equation of state $P = P(\varepsilon) \uparrow$ harder \rightarrow Implications for neutron stars: $M_{max} \uparrow$ [D.P.Menezes, A.Deppman, E.M., L.B.Casto, EPJA51 '15].

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistic and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Scale and Self-Similarity

Scaling transformation \rightarrow changes the size of objects by a scale factor.

SCALING

SELF-SIMILARITY \rightarrow Self-similar object is an object which is similar to a part of itself.

(Example: Sierpiński triangle).

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistic

Conclusions

Tsallis Statistics and Thermofractals

• Emergence of the non-extensive behavior has been attributed to different causes: 1) long-range interactions, correlations and memory effects; 2) temperature fluctuations; 3) finite size of the system **[L.Borland, PLA 245 '98].**

• We will study a natural derivation of non-extensive statistics in terms of Thermofractals.

• Thermofractals \equiv Systems in thermodynamical equilibrium presenting the following properties [A.Deppman, PRD93 '16]:

Total energy is given by:

$$U=F+E\,,$$

where $F \equiv$ kinetic energy, and $E \equiv$ internal energy of N constituent subsystems, so that $E = \sum_{i=1}^{N} \varepsilon_i^{(1)}$.

Constituent subsystems are thermofractals: distribution P_{TF}(E) is self-similar or self-affine → at level n of the subsystem hierarchy P_{TF(n)}(E) is equal to the distribution in the other levels:
 P_{TF(n)}(ε) ∝ P_{TF(n+m)}(ε).

12 / 20

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Tsallis Statistics and

$$P_{\mathrm{BG}}(U)dU = A\exp(-U/kT)dU$$
.

• In <u>thermofractals</u> \rightarrow phase space must include momentum degrees of freedom of free particles as well as internal degrees of freedom. According to property 2 of self-similar thermofractals

F

$$P_{\mathrm{TF}(0)}(U)dU = A' \underbrace{F^{\frac{3N}{2}-1}\exp\left(-\frac{\alpha F}{kT}\right)dF}_{\text{Momentum d.o.f.}} \underbrace{\left[P_{\mathrm{TF}(1)}(\varepsilon)\right]^{\nu}d\varepsilon}_{\text{internal d.o.f.}},$$

$$\alpha = 1 + \underbrace{\varepsilon}_{tT} \text{ and } \underbrace{\varepsilon}_{tT} = \underbrace{E}_{t}, \text{ and } \nu \equiv \text{exponent to be determined.}$$

with $\alpha = 1 + \frac{\varepsilon}{kT}$ and $\frac{\varepsilon}{kT} = \frac{E}{F}$, • By imposing self-similarity

 $P_{\mathrm{TF}(0)}(U) \propto P_{\mathrm{TF}(1)}(\varepsilon)$ one finds: $P_{\mathrm{TF}}(\varepsilon) = A \left[1 + \frac{\varepsilon}{kT} \right]^{-\frac{3N}{2} \frac{1}{1-\nu}} \longrightarrow P_{\mathrm{TF}(n)}(\varepsilon) = A_{(n)} e_q \left[-\frac{\varepsilon}{k\tau} \right]$

→ The distribution of thermofractals then obeys Tsallis statistics with $q - 1 = \frac{2}{3N}(1 - \nu)$.

Eugenio Megías

Introductio

Tsallis statistics

Tsallis statistic and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Renormalization of gauge fields

- QCD phenomenology can be described by <u>Tsallis statistics.</u>
- Thermofractals obey <u>Tsallis statistics.</u>
- Question: Is it possible a thermofractal description of Yang-Mills theory?
- Yang-Mills theory $\mathcal{L} = -\frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} + i\bar{\psi}_{j}\gamma_{\mu}D^{\mu}_{ij}\Psi_{j}$ is renormalizable:
 - $\Gamma(p, m, g) = \lambda^{-D} \Gamma(p, \bar{m}, \bar{g})$ F. Dyson, PR 75 (1949) 1736

M. Gell-Mann and F.E. Low, PR 95 (1954) 1300

Renormalization group equation:

 $\left[M\frac{\partial}{\partial M} + \beta_{\bar{g}}\frac{\partial}{\partial \bar{g}} + \gamma\right]\Gamma = 0$

Callan-Symanzik Equation

C.G. Callan Jr., PRD 2 (1970) 1541

K. Symanzik, Comm. Math. Phys. 18 (1970) 227

Effective coupling constant \bar{g}

Effective mass \bar{m}

Self-similar properties of YM fields \rightarrow loop in higher order is identical to a diagram in lower order. 14/20

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistic and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistic

Conclusions

Effective thermofractal description: Calculation of *q* from gauge field parameters

 $ar{g}(arepsilon) = \prod_{i=1}^{ ilde{N}} G[1-(q-1)rac{arepsilon_i}{\lambda}]^{rac{1}{q-1}}$ A.Deppman, PRD (2016)

q is related to the number of internal degrees of freedom in the fractal structure

 $\bar{g}(\varepsilon)$ describes how energy flows from the initial parton to partons at higher perturbative orders.

• First order calculation of vertex function was performed for YM-theory and QCD. We can then compare what is obtained with our effective description.

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistic and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Bose-Einstein condensation and Tsallis statistics (qBEC) [E.M., V.S. Timóteo, A. Gammal, A. Deppman, Physica A 585 (2022)

 Formation of Bose-Einstein condensate in hadronic systems?
 [D.Kharzeev, E.Levin, K.Tuchin, PRC75 '07]; [I.Bausista; C.Pajares, J.E.Ramirez Rev.Mex.Fis. 65 '19]; [S.Deb, D.Sahu, S.Raghunath, A.K.Pradhan, EPJA 57 '21]
 Relativistic gas of massless bosons

$$\langle N_q \rangle = \beta^{-1} \frac{\partial}{\partial \mu} \log Z_q \Big|_{\beta}, \qquad n_q^{(+)}(\varepsilon, \beta, \mu) = \left[e_q^{(+)}[\beta(\varepsilon - \mu)] - 1 \right]^{-q}.$$

• Total number of particles [Ground state $\varepsilon_c = 0$]

$$N_q \equiv N_q^0 + N_q^\varepsilon = \left[e_q^{(+)} [\beta(\varepsilon_c - \mu)] - 1 \right]^{-q} + \frac{V}{2\pi^2} \int_0^\infty d\varepsilon \, \varepsilon^2 \left[e_q^{(+)} [\beta(\varepsilon - \mu)] - 1 \right]^{-q} \, .$$

• Critical temperature

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistic: and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Bose-Einstein condensation and Tsallis statistics (qBEC)

Fraction of particles in the ground state:

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Applications of Tsallis statistics

High energy collisions:

J. Cleymans; D.J. Worku. Phys. G Nucl. Part. Phys. 2012, 39, 025006 C.-Y. Wong; G. Wilk, G.; Tsallis, C. Phys. Rev. D 2015, 91, 11402 L. Marques, J. Cleymans, and A.Deppman, PRD 91 (2015) 054025

Hadron models:

P.H.G Cardoso; T.N. da Silva; A. Deppman, D.P. Menezes, EPJA 51 (2015) 155 E.Andrade II, A. Deppman, EM, D.P. Menezes, T. Nunes, PRD101 (2020) 054022

Hadron mass spectrum:

L. Marques; E. Andrade-II; A. Deppman, Phys. Rev. D 2013, 87, 114022

Hadron structure:

A. Deppman, E.M., M.J.Teixeira, V.Timóteo, in preparation.

Neutron stars:

D.P. Menezes, A. Deppman, E.M., and L.B. Castro, EPJA 51, (2015) 155

Lattice QCD:

A. Deppman JPG 41 (2014) 055108

Bose-Einstein condensation:

J.Chen, Z.Zhang, G.Su, L.Chen, Y.Shu, Physics Letter A300 (2002) E.M., V.S. Timóteo, A. Gammal, A. Deppman, Physica A 585 (2022)

Non-extensive statistical mechanics:

E.M., A. Deppman, D.P. Menezes, Physica A 421 (2015) 15
 A. Deppman, Physica A 391 (2012) 6380
 A. Deppman, E.M., D.P. Menezes, T. Frederico, (2018) Entropy 20 (2017) 633

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistics and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

 We have reviewed the non-extensive statistics in the form of Tsallis statistics of a quantum gas at finite T and μ.

- pp collisions.
- Heavy ion collisions.
- Hadron spectrum.
- QCD thermodynamics.
- Bose-Einstein condensation.
- We have investigated the structure of a thermodynamical system presenting fractal properties, and shown that it naturally leads to non-extensive statistics.
- Based on the self-similar properties of thermofractals:
 - 'Field theoretical approach' for thermofractals.
 - β function of QCD assuming a thermofractal structure.
- Self-similarity in gauge fields leads to Self-consistency and fractal structure Recursive calculations at any order Non extensive statistics Reconciles Hagedorn's theory with QCD Agreement with experimental data

Eugenio Megías

Introduction

Tsallis statistics

Tsallis statistic and QCD

Fractals and Self-Similarity

Thermofractals

Scales in YM theory

Bose-Einstein condensation and Tsallis statistics

Applications of Tsallis statistics

Conclusions

Thank You!