QCD@Work - International Workshop on QCD - Theory and Experiment

Spectroscopy of the excited D_s mesons

Francesco Debernardis INFN and University of Bari On behalf of the LHCb collaboration

Outline

- 1. The LHCb experiment
- 2. The spectrum of the excited D_s states
 - LHCb: PRL 126 (2021) 122002
 - LHCb: JHEP 10 (2012) 151
 - LHCb: PRL 113 (2014) 162001
- 3. Unresolved puzzles
- 4. LHCb Upgrades and Prospects

QCD@Work

2

The LHCb experiment

QCD@Work

Francesco Debernardis

LH

LHCb EXPERIMENT in Run 1 and Run 2

The LHCb experiment has largely contribuited to the spectroscopy of the D_s mesons, profiting from a large production cross-section:

 $\sigma(pp \rightarrow D_s^+X) = 353 \pm 9 \pm 76 \ \mu b$ JHEP 05 (2017) 074

2018 (6.5 TeV): 2.19 /fb

2015 (6.5 TeV): 0.33 /fb

2012 (4.0 TeV): 2.08 /fb

2011 (3.5 TeV): 1.11 /fb

2010 (3.5 TeV): 0.04 /fb

Mav

Jul

QCD@Work

Integrated Recorded Luminosity (1/fb)

2.2

1.8

1.6

1.4

1.2

0.8 0.6

0.4

Mar

2

The spectrum of the excited D_s states

LHCb: PRL 126 (2021) 122002 LHCb: JHEP 10 (2012) 151 LHCb: PRL 113 (2014) 162001

QCD@Work

Francesco Debernardis

D_{s} SPECTROSCOPY In the heavy quark limit model

At high energy scale, α_s is small: perturbative interactions and at short distance <u>scales</u> $\ll R_{had}$

QCD@Work

At small energy scale,

 α_s is large: interactions with non perturbative confinement phenomena of quarks and gluons at large length scale $R_{had} \sim \frac{1}{\Lambda_{\text{OCD}}} \approx 1 \text{ fm}$

Francesco Debernardis

- The **heavy quark** is much smaller than the hadron size and it is surrounded by a strongly interacting cloud of light quarks, antiquarks, and gluons with which the **light quark** interacts.
- The heavy-quark spin effect is not seen by the light quarks, such that the heavy-quark spin decouples.

D_{s} SPECTROSCOPY

MESON STATE 2S+1

L: orbital angular momentum between constituent quarks (S, P, D correspond to L = 0, 1, 2)

5

- S = 0, 1: sum of quark spins
- J: total spins of meson state
- $J_{\overline{S}}$: sum of *L* with the spin of light \bar{s} quark

P: parity

The *P*-wave (L = 1) states

$D_{s0}(2590)$ at LHCb

The $B^0 \rightarrow D^- D^+ K^+ \pi^$ is studied. A new D_s^+ meson, $D_{s0}(2590)^+$, is observed into the $D^+ K^+ \pi^-$ final state and it is interpreted as radial excitation of the ground state.

 $J^P = 0^-$ is the spinparity having best fit quality in the amplitude analysis

Unresolved puzzles

QCD@Work

Francesco Debernardis

13

INFN Istituto Nazionale di Fisica Nucleare

LH

The puzzle of the $D_{s1}(2536)$ Belle: PI

Since the *c* quark is not infinitely heavy, the $D_{s1}(2536)^+$ can contain an admixture of another state from $j_{\bar{s}} = 1/2$ and can have a small decay fraction in an *S*-wave.

An angular analysis of the $D_{s1}(2536)^+$ decay in $D^{*+}K_S^0$ is performed, showing an unexpected *S*wave dominant contribution.

 $D_{s0}^*(2317)^+ \rightarrow D_s^+ \pi^0$ **BABAR (2003)**

Narrow signal state, labeled as $D_{sJ}^*(2317)^+$, observed in the inclusive $D_s^+\pi^0$ mass distribution by the BABAR collaboration.

PRL 90 (2003) 242001

"Since a $c\bar{s}$ meson of this mass contradicts current models [...] these models need modification or the observed state is of a different type altogether, such as a four-quark state."

QCD@Work

$D_{s1}(2460)^+ \rightarrow D_s^{*+}\pi^0$ CLEO (2003)

A narrow peak has been observed by the CLEO collaboration while exploring the $D_s^{*+}\pi^0$ mass distribution.

PRL 68 (2003) 032002

 $D_{s1}(2460)^+$ mass is above the kinematic threshold for decay to DK but the narrow width suggests that latter decay does not occur, hinting the state is the missing $J^P = 1^+$ excited state.

The puzzle of the $D_{s1}(2460)$

For the D_s^{*+} meson, radiative decay mode is much more likely because is not isospin-violating, unlike the $D_s\pi^0$ mode.

Same remarks should be also valid for the $D_{s1}(2460)$ in a $c\bar{s}$ scenario.

But isospin-violating $D_s^*\pi^0$ decay mode is much more frequent than $D_s\gamma$ mode, suggesting a 4-quark component ($c\bar{s}u\bar{u}$ or $c\bar{s}d\bar{d}$).

LHCb Upgrades and Prospects

QCD@Work

Francesco Debernardis

19

INFN Istituto Nazionale di Fisica Nucleare

Summary:

QCD@Work

LHCb has made a large contribution to the spectroscopy of the D_s mesons, profiting from the large production cross-section.

New D_s excited state observed: $D_{s0}(2590)$, $D_{s1}^*(2860)$, $D_{s3}^*(2860)$

Francesco Debernardis

Analysis Prospects:

- Search for new decay modes, e.g., muonic Dalitz decay $D_{s1}(2460) \rightarrow D_s + \gamma^* \rightarrow D_s \ \mu^+ \ \mu^$ inspired by the observed $\chi_{c1}, \chi_{c2} \rightarrow J/\psi \ \mu^+\mu^-$ decays (PRL 119 (2017) 221801)
- Production measurement of, e.g., $D_{s1}(2460)$ via $D_s\gamma$ decays
- Quantum numbers measurement e.g., $D_{s0}^*(2317)^+$ spin-parity, by studying the decay $B_s^0 \rightarrow D_{s0}^*(2317)^-\pi^+ \rightarrow D_s^-\pi^0\pi^+$ 21

Thank you for your attention

Francesco Debernardis INFN and University of Bari On behalf of the LHCb collaboration

LHCb Upgrade I outline

VELO:

- Si-strips measuring r and phi. -> Hybrid Pixel Silicon detector
- Two movable halves: get closer to beam [50mm to 5mm] -> [5mm to 3.5mm]
- New ASIC VeloPix

TRACKERS:

• Upstream Tracker (UT):

Silicon micro-strip planes with finer granularity and closer to beam New readout ASIC

• T1-T3:

Silicon microstrips near beam pipe (Inner Tracker) + straw tubes outer (Outer Tracker) -> (Too high occupancy in central region) -> New detector based on Schintillating Thin Fibers

RICH:

- RICH 1 change everything but the magnetic shielding: Mirrors, gas enclosure, quartz windows
 - Photon detectors, electronics, detector mechanics
- RICH 2 change only detectors: Photon detectors, electronics, detector mechanics

CALORIMETERS:

- Present Calorimeters (ECAL, HCAL) detectors will be kept
- PMT gain will be reduced by a factor 5 to reduce ageing due to higher luminosities
- New front-end electronics to be compatible with the reduced gain and the trigger-less readout

MUON DETECTOR:

- Present Muon detector (M1 removed) will be kept with MWPCs
- Front-End electronics will be redeveloped to be compatible with trigger-less readout

CERN-LHCC-2012-007 CERN-LHCC-2014-001 CERN-LHCC-2013-022