

Latest results from NA62 and NA48/2 experiments

Michele Corvino, CERN QCD@Work, Lecce (Italy), 30/06/2022

Kaon physics at CERN

Years	Experiment	Beam	Main goals
1984- 1990	NA31	K_L/K_s	First evidence of direct CPV
1997- 2001	NA48	K_L/K_s	Discovery of direct CPV
2002	NA48/1	K_s , hyperons	Rare Ks and hyperons decays
2003- 2004	NA48/2	K^+/K^-	Direct CPV and rare K+/K- decays
2007- 2008	NA62-RK	K^+/K^-	LFU test
2016-	NA62	K^+	$BR(K^+ \to \pi^+ \nu \bar{\nu})$

NA48/2: beam line

6% Kaons from target $P_{K^{\pm}} \approx 60 \; GeV/c$ $\Delta P/P = 3.8\%$

KAon BEam Spectrometer (KABES):

 $\sigma(X, Y) = 800 \ \mu m$ $\sigma(P) = 1\%$ $\sigma(T) = 600 \ ps$

NA48/2: detectors

Main detectors:

Drift chambers

 $\sigma(X,Y) = 90 \ \mu m$ per chamber

- Hodoscope $\sigma(T) \sim 150 \ ps$
- Liquid Krypton calorimeter $\sigma(X,Y) = (0.42/\sqrt{\frac{E}{1 \ GeV}} \oplus 0.06) \ cm$ $\sigma(E_{\gamma})/E_{\gamma} = (3.2/\sqrt{\frac{E}{1 \ GeV}} \oplus 9.0/\frac{E}{1 \ GeV} \oplus 0.42)\%$
 - Hadronic calorimeter
 - Muon veto

Measurement of $BR(K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu)$

K_{l4} decays are described by F,G,R,H form-factors

Mode	BR [x10 ⁻⁵]	N _{cand}	Experiment
K_{e4}^{\pm}	4.26 ± 0.04	1108941	NA48/2
K_{e4}^{00}	2.55 ± 0.04	65210	NA48/2 (2014)
$K_{\mu4}^{\pm}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K^{00}_{\mu 4}$	-	0	

Main background contribution for muon channels:

$$K^{\pm} \to \pi \pi (\pi^{\pm} \to \mu^{\pm} \nu)$$

Cabibbo-Maksymowicz variables:

- S_{π} (dipion mass), $S_{\text{\tiny I}}$ (dilepton mass), $\theta_{\pi},\,\theta_{\text{\tiny I}}$ and Φ
- for $K^{00}_{\mu4}\,$ s-wave for $\pi^0\pi^0$, only F and R contribute

Event selection

Normalization channel: $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ $(K^{00}_{3\pi})$

Selection:

- 4 isolated photons in Lkr compatible with a pair of $\pi^{\scriptscriptstyle 0}$
- Charged track associated to MUV activity
- Downstream event matched to a KABES track

Background rejection:

• Cut on 3-pion mass, p_t , missing mass, $cos(\theta_l)$

Background estimated using signal sidebands in the missing mass distribution

Phase space

BR($K^{00}_{\mu4}$) measured in the restricted phase space, extrapolation to full phase space depends on theory

 $K_{\mu4}^{00}$ simulation used parametrization of F from K_{e4}^{00} decay: [NA48/2 JHEP 08 (2014) 159]

R obtained from ChPT theory: [J. Bijnes, G. Colangelo, J. Gasser, Nucl. Phys. B 427 (1994) 427]

Branching Ratio

$$BR(K^{00}_{\mu4}) = \frac{N_S}{N_N} \cdot \frac{A_N}{A_S} \cdot K_{trig} \cdot BR(K^{00}_{3\pi})$$

Signal events (after background subtraction): $2083 \pm 59_{stat}$ $S/B = 5.89 \pm 0.66_{stat}$ Normalization events: $N_N = 72.99 \times 10^6$ Acceptances: $A_N = (4.477 \pm 0.002)\%$ $A_S^r = (3.453 \pm 0.007)\%$ $A_S = (0.651 \pm 0.001)\%$ Trigger corrections: $K_{trig} = 0.999 \pm 0.002$ From PDG: $BR(K_{3\pi}^{00}) = (1.760 \pm 0.023)\%$

Results

Full phase-space result: $BR(K_{\mu 4}^{00}) = (3.45 \pm 0.17) \times 10^{-6}$

Consistent with the predicted value with 1-loop contribution from R, as expected from ChPT

The NA62 experiment

Fixed target, high intensity (~800 MHz) kaon beam

Main goal: measurement of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ at 10% precision

Broad physics program:

- Precision measurement of kaon decays: $BR(K^+ \to \pi^0 e^+ \nu \gamma)$, $BR(K^+ \to \pi^+ \mu^+ \mu^-)$
- Rare kaon decays: $BR(K^+ \to \mu^+ \nu \nu \nu)$, search for Heavy Neutral Leptons, search for Lepton Number and Lepton Flavour Violation

Data collected: Run1 (2016-2018), Run2 (2021-ongoing)

Topics of this talk

NA62 experimental layout

75 GeV/c , ~ 45 MHz Kaon beam

O(70 ps) time resolutions from KTAG, GTK, RICH

Large background suppression of decays with neutral pions and muons in the final state

Motivations for $BR(K^+ \to \pi^+ \nu \bar{\nu})$

FCNC process, suppressed by CKM

 $BR_{th}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ [Buras et al. , JHEP 1511 (2015)]

 $K \to \pi \nu \bar{\nu}$ decays are very powerful tools to discriminate among NP scenarios:

Randall-Sundrum Littlest Higgs with T parity Minimal Flavour Violation

Experimental strategy

Poor experimental signature: only 1 charged track in the final state, neutrinos undetected

Event selection:

- K π matching, O(100 ps) timing
- Cuts on decay vertex, CDA
- Pion identification
- Photon rejection
- · Kinematic cuts, signal regions kept blind
- Normalization channel: $K^+ \to \pi^+ \pi^0$

$$m_{miss}^2 = (P_K - p_\pi)^\mu (P_K - p_\pi)_\mu$$

Background contributions

Kaon decays in FV

• $K^+ \to \pi^+ \pi^0$, $K^+ \to \mu^+ \nu$, $K^+ \to \pi^+ \pi^+ \pi^-$ from their background regions

$$N_{decay}^{exp} = N_{bkgd} \cdot f_{kin}$$

• Background from other kaon decays estimated with MC simulations

Background contributions

Upstream background

- Pion from K decays before GTK last station, matched to a pileup kaon
- Pion from beam interaction with the beamline material

Single Event Sensitivity

SES is defined as:

$$SES = \frac{\mathrm{BR}(K^+ \to \pi^+ \pi^0) \cdot A_{\pi\pi}}{D \cdot N_{\pi\pi} \cdot A_{\pi\nu\bar{\nu}} \cdot \epsilon_{\mathrm{RV}} \cdot \epsilon_{\mathrm{trig}}^{\mathrm{PNN}}}$$

Single Event Sensitivity

SES is defined as:

Single Event Sensitivity

SES is defined as:

$$SES = \frac{\mathrm{BR}(K^+ \to \pi^+ \pi^0) \cdot A_{\pi\pi}}{D \cdot N_{\pi\pi} \cdot A_{\pi\nu\bar{\nu}} \cdot \epsilon_{\mathrm{RV}} \cdot \epsilon_{\mathrm{RV}}^{\mathrm{PNN}} \cdot \epsilon_{\mathrm{trig}}^{\mathrm{PNN}}}$$

		S1 subsample	S2 subsample
	$N_{\pi\pi}[imes 10^7]$	3.14	11.6
	$A_{\pi\pi}[\times 10^{-2}]$	7.62 ± 0.77	11.77 ± 1.18
	$A_{\pi\nu\bar{\nu}}[\times 10^{-2}]$	3.95 ± 0.40	7.62 ± 0.77
	ϵ_{trig}^{PNN}	0.89 ± 0.05	7.62 ± 0.77
	ϵ_{RV}	0.66 ± 0.01	7.62 ± 0.77
	$SES[\times 10^{-10}]$	0.54 ± 0.04	7.62 ± 0.77
$N^{exp}_{\pi\nu\bar{\nu}} = N_K \times SES$	$N^{exp}_{\pi uar u}$	$1.56 \pm 0.77 \pm 0.19$	$6.02 \pm 0.39 \pm 0.72$

Result

20 events oberved: 1 (2016) + 2 (2017) + 17 (2018)

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11}$

 3.4σ significance

30/06/2022

Latest results from NA62 and NA48/2 experiments

Precision measurements: $BR(K^+ \rightarrow \pi^0 e^+ \nu \gamma)$

Process described by DE+IB+INT

BR predicted and measured in 3 regions of the phase space

T-odd observable $\xi = rac{ec{p_\gamma} \cdot (ec{p_e} imes ec{p_\pi})}{M_K^3}$, test for T violation

Experimental strategy: normalization to $K^+ \to \pi^0 e^+ \nu$ decay, main background due to accidental activity in the LKr estimated using signal sidebands

	<u>ChPT</u>	ISTRA+	ΟΚΑ	NA62 <u>preliminary</u>
$R_1 (\times 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.684 \pm 0.05 \pm 0.010$
$R_2(\times 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.599 \pm 0.003 \pm 0.005$
$R_3(\times 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.523 \pm 0.003 \pm 0.003$

Precision measurements: $BR(K^+ \rightarrow \pi^+ \mu^+ \mu^-)$

FCNC process, allows to test Lepton Flavour Universality

Form factor parametrized by a and b coefficients

	a	b	$\mathcal{B}_{\pi\mu\mu} \times 10^8$
Best fit	-0.592	-0.699	9.27
Errors	δa	δb	$\delta \mathcal{B}_{\pi\mu\mu} \times 10^8$
Statistical	0.013	0.046	0.07
Systematic			
Reconstruction efficiency	0.005	0.026	0.06
Beam & pileup simulation	0.005	0.024	0.05
Trigger efficiency	0.001	0.005	0.04
Background	0.000	0.001	0.01
Total systematic	0.007	0.035	0.08
External			
PDG error on $\mathcal{B}(K_{3\pi})$	0.001	0.003	0.04
Total	0.015	0.058	0.11

30/06/2022

Latest results from NA62 and NA48/2 experiments

Rare decays: searches for LNV

Search for $K^+ \to \pi^- e^+ e^+$: blind analysis, normalization to SM decay $K^+ \to \pi^+ e^+ e^-$

30/06/2022

Mode	Lower region	Upper region	Masked region	Signal region
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.9	_	_	_
$K^+ \to \pi^+\pi^- e^+ \nu$	3.3	_	_	_
$K^+ \to \pi^+ \pi_D^0$	_	0.02	0.01	_
$K^+ \to \pi_D^0 e^+ \nu$	3.7 ± 0.7	1.20 ± 0.24	1.23 ± 0.25	0.29 ± 0.06
$K^+ \to e^+ \nu e^+ e^-$	0.7 ± 0.1	0.76 ± 0.15	0.47 ± 0.09	0.14 ± 0.03
Total	8.6 ± 0.9	1.98 ± 0.39	1.71 ± 0.34	0.43 ± 0.09
Data	8	1	1	0

 $BR(K^+ \to \pi^- e^+ e^+) < 5.3 \times 10^{-11}$ 90% CL

[PLB830 (2022)137172]

Rare decays: searches for LNV

Search for $K^+ \to \pi^- \pi^0 e^+ e^+$: blind analysis, normalization to SM decay $K^+ \to \pi^+ e^+ e^-$

Mode	Control region	Signal region
$K^+ \rightarrow \pi^+ \pi^0 \pi_D^0$	0.16 ± 0.01	0.019
$K^+ \rightarrow \pi^+ \pi_D^0 \gamma$	0.06 ± 0.01	0.004
$K^+ ightarrow \pi_D^0 e^{\mp} \nu \gamma$	0.05 ± 0.02	_
$K^+ \to \pi^+ \pi^0 e^+ e^-$	0.01	0.001
Pileup	0.20 ± 0.20	0.020 ± 0.020
Total	0.48 ± 0.20	0.044 ± 0.020
Data	1	0

 $BR(K^+ \to \pi^- \pi^0 e^+ e^+) < 8.5 \times 10^{-10}$ 90% CL First search for this LNV decay [PLB830 (2022)137172]

Other LNV searches

30/06/2022

Latest results from NA62 and NA48/2 experiments

LNV/LFV summary

	Previous UL @90% CL	NA62 UL @90% CL			
$K^+ \to \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	2017 data	PLB 797 (2019) 134794	Factor 2 improvement
$\begin{array}{c} K^+ \rightarrow \pi^- e^+ e^+ \\ K^+ \rightarrow \pi^- \pi^0 e^+ e^+ \end{array}$	6.4×10^{-10} no limit	5.3×10^{-11} 8.5×10^{-10}	Run1 data Run1 data	PLB 830 (2022) 137172 PLB 830 (2022) 137172	Factor 12 Improvement
$K^+ ightarrow \pi^- \mu^+ e^+$	$5.0 imes 10^{-10}$	4.2×10^{-11}	$2017 {+} 2018 \text{ data}$	PRL 127 (2021) 131802	Factor 12 improvement
$K^+ \rightarrow \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	2017+2018 data	PRL 127 (2021) 131802	Factor 8 improvement
$\pi^{o} \rightarrow \mu^{-} e^{+}$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data	PRL 127 (2021) 131802	Factor 13 improvement

Search for Heavy Neutral Leptons (HNL)

Search for HNL production in $K^+ \rightarrow l^+ N$

30/06/2022

Peak search performed in the squared missing mass distribution

CERN

Latest results from NA62 and NA48/2 experiments

$K^+ \to \mu^+ \nu \nu \nu$ and $K^+ \to \mu^+ \nu X$

• $K^+ \to \mu^+ \nu \nu \nu$

- Very rare decay in the SM $\ BR = 1.6 \times 10^{-16}$
- Current limit: $BR < 2.4 \times 10^{-6}$ by E949(2016)
- Search region: $m^2_{miss} > 0.1 \ GeV^2/c^4$
- NA62 result: $BR < 1.0 \times 10^{-6}$ @ 90% CL

$K^+ \to \mu^+ \nu X$

- X scalar or vector
- Mass range: 10 370 MeV/c²
- Compared observed and expected events for each mass hypothesis to extract limit

Conclusions

NA48/2: first measurement of BR($K^{00}_{\mu4}$), result compatible with 1-loop calculation of R form factor from ChPT

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11}$ most precise measurement

Precision measurement:

Improved precision on $BR(K^+ \to \pi^0 e^+ \nu \gamma)$ and $BR(K^+ \to \pi^+ \mu^+ \mu^-)$

Rare decays:

improved limits LNV/LFV searches

improved limits in HNL searches, $K^+ \rightarrow \mu^+ \nu \nu \nu$ and $K^+ \rightarrow \mu^+ \nu X$

NA62 data taking restarted in 2021, more results to come

