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Theory vs experiment after the Fermilab measurement

The 2021 Fermilab experiment result combined with the previous E821
result has enlarged the discrepancy between experimental and theoretical
(SM) values of a,, = (g — 2),/2 from 3.70 to 4.20

Status before Fermilab(21)

Contribution

Experiment (E821) 116592 089(63)

HVPLO (e*e) 6931(40)

HVPNLO (e*e7) —-98.3(7)
HVP NNLO (e*e™) 12.4(1)
HVP LO (lattice, udsc) 7116(184)
HLbL (phenomenology) 92(19)
HLbL NLO (phenomenology) 2(1)
HLbL (lattice, uds) 79(35)
HLbL (phenomenology + lattice) 90(17)
QED 116584718.931(104)
Electroweak 153.6(1.0)
HVP (e*e”. LO + NLO + NNLO) 6845(40)
HLbL (phenomenology + lattice + NLO) 92(18)

Total SM Value 116591 810(43)

Value x10""  Combined Exp(21) 116592061(41) x 101!
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Current status of experiment and SM theoretical predictions for a, ( Muon g-2
collaboration PRL 126 (21) 14181). The theoretical prediction is taken from the
White Paper (Ayoama et. al. Phys.Rept 887 (20) 1-166)



Hadronic contributions to a,

Hadronic Vacuum Polarization (HVP) and Hadronic Light-by-Light scattering (HLbL).
HVP related through unitarity cut to physical e™ — e~ cross section.

Only recently dispersion techniques sistematically applied to HLbL (data driven
approach), previous estimates based on phenomenological models

Evolution of the theoretical estimates of the
HVP and HLbL Feynman diagrams Vvarious processes contributing to HLbL

¢

2 Contribution PdRV(09) N/IN(09) J(17) WP(20)
70, y'-poles 114(13) 99(16)  95.45(12.40) 93.8(4.0)
\\\\ 7, K-loops/boxes -19(19) —19(13) =20(5) -16.4(2)
N \\‘ S-wave rr rescattering =7(7) -7(2) -5.98(1.20) -8(1)
HVP contribution to g — 2 subtotal 88(24) 7321)  69.5(13.4) 69.4(4.1)
A scalars - = = -
94) =1(3
N\ tensors - - 1.1(1)

k axial vectors 15(10) 22(5) 7.55(2.71) 6(6)

q 5 L g _
i @b N N . d. s-loops / short-distance - 21(3) 20(4) 15(10)

e e e

HLBL contribution to g — 2 c-loop 23 - 2.3(2) 3(1)
total 105(26) 116(39) 100.4(28.2) 92(19)

» HLbL major source of uncertainty to the hadronic contributions to a,, and a lot
of effort (and progress) has been done very recently to assess its value.

» Recently, lattice collaborations have published values for HVP which greatly
differ with previous estimates and would push the total value of a;, close to the
experimental value. It was a bolt in clear sky, currently under scrutiny.



Theoretical conudrum on HVP

Data driven approach based on unitarity and R-ratio evaluation and
Lattice QCD results give "incompatible” results. Here are BMW
collaboration result and more recent (june ‘22) investigations

HVP contributions according to BMWc'20 paper

lattice —8—
R-ratio —&—
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DHMZ'19 | —om :
KNT'19 | o :
CHHKS'19 -~ no newfphysics
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1010 x ahO-HVP

Lattice (green squares), R-ratio method (data
driven approach) (red circles)

A very recent (june 22) compilation of
HVP estimetes (in a particular Euclidean
window)

A.Ce’ et al arXiv:2206.06582

"we@+  This work
— ETMC 21
—— BMW 20
—— RBC/UKQCD 18
Il—o—l L I('o];lmg.',(']n et al. 22 (R-ratio)

230 235 240

ay™ x 10710

Lattice QCD: green point A.Ce’ et al (22)
and blue points. Red point data driven
analysis of G.Colangelo et al. 2205.12963

[hep-ph]



The Hadronic Light-by-Light Tensor

"7 (q1, g2, 43) = _i/d4Xd4yd4z e Mm@y as2) | T{jb (x)jtm (Y )i (2)i8n (0)}] >
G=q1+q+gs3

138 Lorentz structures The HLbL tensor in the HLbL diagram

I—I,ul/)\o' — g,u,ug)\o' I—Il + g,u)\gucr |—|2 + g,ucrgu)\ |—|3

®
A 4 A 5 A6 o
+ > (e™atay NG+ aray MG+ "7 af a1
ij=1,2,3
+8" gl qf T + 877 ql' ) NG + g7 gl'q 1) @ .
a3 !
g qrq? N0 ,
+;jk/Z:123q' 9k ik w )~ p-a e k(@)

95 linearly independent relations 43 linearly independent tensor structures
from gauge invariance - BTT basis: 54 (redundant) tensor
{915 G2vs G3p» Gac YTV (q1, 42, g3) = 0 it.;iizzfssxg:;x::; 21;";:22'50 rellt 2??1?;
Complete crossing symmetric

54
Ao __ 7PN
neere =" T,
Cia={q1 < —qa,p <0}, Ci3={q1 < g3, 0> A} i—1



Master Formula for aHLbL

HLbL _ _ e® / d*qy d*q 1 1 1
g 48my. ) (2m)* (2m)* a7 g5(q1 + @2)? (P + qu)? — m2 (p — q2)% —
X T ((p+ m)b”, v 71B+ ma)r"(p+ g, + ma)r (p = b, + mar”)

54

1o}
x Z (a P MV)\O'(qlvq27q4 —q1— (72)>

i=1

Mi(q1, g2, —q1 — q2).
qs=0

Only 19 independent linear combinations of the 54 T/*** contribute to aj Pt

Using Gegenbauer polynomials techniques (Knecht NyfFeIer (01), the symmetry
of the loop integral and the propagators, there remain 12 different integrals
containing 12 coefficients M;(q1, g2, —q1 — ¢2).

aHLbL / dQl/ sz/ dTv1—7'2Q1Q22T Q1, @, 7 H(QI,Q277')

where Q1 := | Q1]
G=-Q, $=-Q, G=-Q=-Q 27—, g=0.

Q2 :=|@|. N; evaluated for the reduced kinematics

Integral kernels expressions T;( @1, @2, 7), in Colangelo et al.(15&17)



TFF and one-pion exchange HLbL diagrams
Leading contribution in the Large-N,. and chiral limit

HLbL One-pion

exchange diagrams.

Ansatze for Fpyx-= (Cﬁ, q%)

N
WZW : — —
1274 fr
vmp .~ Ne __my ur

127 fr (qf — my) (a3 — my)
LMD .f7r q% + q% - (NCm‘\‘//(47r2f7$))
3 2 _ 2\ .2 _ 2
(g1 — my)(az — my)
Ps(ai, a5, My, , My,; h1, ha, hs)

(ai — my,) (@5 — my,)(ai — mi,) (g5 — mi,)

LMD + V :

oo.\ ol

Knecht, Nyffeler(01)

N, q %
DIP: — ¢ [14 +
12, < ((q% —) (@ - )

2 2
a1 q2
+1 Z 2 V(a2

i 12 ai — mi,) (a3 — mi,)

) C, Cata,D’Ambrosio(11)



a,

HLbL 7O

estimates

{(HQCD's)LMR(19)
VMD 5.7 KN(01) L0 10
LMD 1V 6.3 KN(01) i
SS 4.83
DIP 6.58 CCD(11) — g
(HQCD's) 59(2) | LMR(19) o T
DVR interp. 5.64(25) DVR(19) SW 502
Lattice | 5.97+ 0.23 | GMN(19)

Danilkin,Redmer,Vanderaeghen(19), Gérardin,Meyer, Nyffeler(19)

DIP refers to an “Hybrid” HQCD approach of C, Cata, D'Ambrosio (11),
updated and extended by Leutgelb, Mager and Rebhan (19)



Holographic QCD

Good features
» Lagrangian formulation (although in 5D)

» Leading Short Distance (SD) from pQCD reproduced by HQCD models
with (asymptotic) 5D AdS metric

» In AdS slice (IR cut-off) (Hard-Wall models) or with also quadratic
dilaton bakground (Soft-Wall models), there are an infinite number of
(KK) resonances saturating the channels as expected for Large-N. QCD

» Small numer of free parameters (e.g. 5D gauge coupling and size of the
extradimension)

» Many explicit analytic calculations

Not-so-good features
» xSB realized in different ways (but we have our favourite modell)
» Different kind of resonances mass spectra (Regge vs non Regge)

» One top-down approach (Sakai-Sugimoto) not even asymptotically AdS,
but giving reasonable low-energy hadronic physics



SS:
HW1:
HW?2:

SW:

Holographic models of QCD

Sakai,Sugimoto(05)

Erlich, Katz, Son, Stephanov(05) ,Da Rold, Pomarol(05)
Hirn,Sanz(05)

Karch, Katz, Son, Stephanov(06)

.. and many descendants



Holographic models of QCD: ingredients & recipes

HQCD models inspired by AdS/CFT duality between a 4D (conformal)
(Large-N.) gauge theory at strong coupling and a (classical) 5D field

theory in a curved Anti-de Sitter space

exp(iW[s(x)]) = <exp (i /dax S(X)OA(X))> = exp (i S5(Po(z, x)))

QCD

Maldacena (97), Gubser Klebanov Polyakov (98), Witten (98)

4D

5D

Hard-Wall , woa=1/z operator Op(x)

source s(x) coupled to Oa(x)

dual field ®(x, z)
on-shell ®g(x, z) — s(x)

% conformal dimension A mass mg:
m = (A= p)(&+p—4)
B(x,2) o3 5D U(Nf)L x U(Nf)g U(Nf) x U(Nf)r
l global symmetry gauge symmetry
l gauge field V(x, 2)

) 4[/ vector current gy#t? q vj,(x) <

S(X) Ox(X) mé = n Xu axial current gy*~s5t? q aZ(x) —

gauge field A7 (x, z)

quark bilinear gt q s(x) <  scalar field X?(x, z)
. Hard-Wall: sharp cut-off 0 <z < z
confinement . .
Soft-Wall: dilaton potential

D file X
Chiral Symmetry Breaking {5 profile X(z)

5D parity/ ChSB boundary.conditions




(Large-N.) QCD correlators from on-shell Ss

» 2-point Functions: VV, AA and SS Current-Current Correlators
6255
5V (x)0v"(y)
52Ss
dat(x)oav(y)
52Ss
ds(x)ds(y)

» 3-point Functions: The Pion Transition Form Factor

OIT {4y (x)v(y)}0) =
OIT{J3(x)Ja(y)}10) <=

(OIT {Js(x)Js(y)}0) <=

53Ss
dm(x)dvg (y)ovg (2)
» 4-point Function: The Hadronic Light-by-Light Tensor
(OIT { I . () JE . (¥) L2 (2) I m. (W) } [0)
5*Ss
5vé‘(x)5vo (y)5v0 (2)ov5 (w)

(mOIT {Jeim.(¥) Jeim.(2) }10) =




HQCD: minimal 5D Lagrangian

S5 = /dsx\/E(EYM + Lx) + Scs

Lym ==X tr[F(AL/l)NF(L)MN + F(%VF(R)MN} Lx = ptr [DMXTDMX - miXTX]

Scs = /tr[W5(L) —ws(R)]

» AdSs metric ds? = % (dxi — dz2). 0<z< z,with zpx1/m,

> X transforms as a bifundamental of U(3); x U(3)r: X — g1 Xg}

> Fun = OmAn — OnAm — i[Aum, An] and A r =V F A,

» In the HW1 models the 5D scalar field X(x, z), dual to §q, induces xSB,
by acquiring a non trivial 5D profile X = Xo(z)

» In HW2 there is no 5D scalar field. xSB broken by different boundary
conditions for V,, and A, on the IR wall z5 and the 4D chiral field U(x)
appears in the zero mode part of A,(x, z).

» The Chern-Simons Scs term describes anomalous processes



3-point Function: Pion TFF from HW?2

/ d*x e (P(qu+ )| T {JE . (x) 2 m (0)} ) = €777 q1 p G2 o Foyr o (QF, Q3)

2 2
where QI,Z = —q12

For P = 7%, real photons normalization

Fro4+(0,0) = (pointlike WZW vertex)

127%f,
Normalized TFF K(Q2, Q2) = Fryery+(Q2, Q2)/Fpy=+(0,0) — K(0,0) = 1
Where is the pion field in HW2?

V.(x,2) = vu(x) + fo"so")(x7 z)

Au,2) = (30 + 258 ) a(a) + A=, 2

Anomalous AVV amplitudes from trilinear terms in the CS action

@ _ Ne
© 2472

/tr (L(c/L)2 - R(dR)2) with L=V +A R=V—A



3-point Functions: The Pion Transition Form Factor

K(Qfa Q22) = - 020 V(Qlaz)V(Q2vz)aZa(z)dZ == --- <

v(q2,z): vector bulk-to-boundary propagator, a:: pion “wave function”

Low- @

K(QF, @) =1+a(Qf + @3)
+B8QQABE+7(Q+ @)+ ...

F(G?,0) (GeV"]
03

F(0) (PDG 2018)

L3
=+ CELLO
+  CLEO
+  BESIII preliminary
—ss

HWI  —eeee DIP1
—— HW2  meee oP2 |

—sw

Leutgeb,Mager,Rebhan(19)

2
" @Gev?)

Short distance Q2 > Agcp

QPF4(Q%,Q%)IF(0,0)

KpC)CD(Q27 0) —

’(pQCD(QZ7 QZ) —

82 f2

Q?
82 f?

3Q?

[



4-point Function: HLbL tensor from HW?2
C., Cata’, D'Ambrosio, Greynat, lyer (19), Leutgeb, Rebhan(19)

Propagators (from Syw)

a1, 3
> <1 (Massive) axial resonances
%%
E ¥ B S

Wy

q” A qH A
L 3 1\\/3 5D axial Green function
q 4o q/\qa Gh¥(z,7':9%) =
S A CO R Gl (2,71 %)PY"(a) + Gi(2,2))P}" (q)
H A H A AV
q“q
%” ;><<" P = (s - )
>< o
o - P (q) = L7
A B N T ' &

Pion propagator
Pion and Massive axial resonances anomalous AVV
vertices from Scs ™

i



4-point Function: HLbL tensor from HW?2 contn'd

n puvio — I-I(LTr, A) pvo + |—|(7/_4) uvio
N——— —_———

pion & massive axial reson. massive axial reson.

where, for the massive resonances contributions

/ ’ AN ’

A e _ (et 9L w9 A 9395 ool 459
LT =1 2 g 2 g 2 g 2
91 a3 a3 qz

transverse projectors on external vector legs

oy Bé

X Ep.’l/a[f EXo'yS X PL,T X AL,T

—/_.J Ny ~—~—
anomalous couplings L, T proj. in G4z and z’ integrals

AfaT contains combinations of the form qqu QZ’T(qa, Gb; Gc, q4) with the convolution
integrals

L = o / 2 2\ ~L / /2 /2
gA(q3=qb;qC7qd) = o dz o dz V(27 qa)alv(zv qb)GA(sz )V(Z 7qc)8zlv(z 7qd)

T # % 2 2\ ~T 2 2
gA(Qanb;CIQQd):/O dZ/O dz'v(z,43)0:v(z,43)Ga (2,2'; qatap)v(Z', 42) 0, v(2', G3)



Short distance constraints
Two different kinematic limit Large Euclidean momenta in two different
kinematic limits Quark loop and Melnikov-Vainshtein

Quark loop: Q7 ~ Q2 ~ “gV |im2it: Q1 i —QQ2 and
Q> Ngep, Qa=0 Q2 ~ Q2> @G> Ny

» Quark loop: For the longitudinal component of the HLbL tensor, the quark
loop diagram in QCD gives:
4 0.44
97T2Q4 7r2Q4 :
This limit cannot be fulfilled by the pion contribution, which falls off like Q5.
The relevant piece comes instead from the axial-vector tower:

I o Nc hd 3 0.36
Wizza = *W/O x* Ky (x)* dx ~ prors (2

About 80% of the OPE coefficient. This mismatch could be due other hadronic
contributions not included in our model (e.g., massive pseudoscalar mesons)

W1H2;34 = &




Short distance constraints cont'd

» Melnikov-Veinshtein limit: The key object is the product of two of the
electromagnetic currents in the HLbL tensor

W™ (g1, q2) = / d*x / dy @ RN T () 7 ()}

In the kinematical limit Q1 = £Q — Q3/2; Q> = —£Q — Q3/2 where ¢ is large
and all momenta are Euclidean. OPE gives:

. v 12§ v 3 —iq3-z ; ; =
Jim w2 2y 3 [tz e la), 152 = 360
a

Thus, axial anomaly enters through the VVA 3-point function. The contribution
of the full axial-vector tower is the relevant piece

o 2 o
(2,0, @) = 2 a(z. Q) §+1(@) +} (2,0 = -2 (2.

5\ Q C3Q2

The longitudinal piece is exact to all orders in Q3 (anomaly non renormalization,
correctly implemented in the model).

Cancellation between the pion and longitudinal axial-vector contributions in the
chiral limit.

The pion contribution alone, i.e., wg’r)(Q3) ~ 2N

e
Q2+m2
incompatible with w ~ Q;Z in the chiral limit.
No single particle exchange can saturate w; .

Frry~(Q3,0), is clearly



Relevance of the short distance constraints

Asymptotic behaviour of the HW2 4-point amplitude for large Euclidean
momenta
» Main result: Melnikov-Vainshtein [Melnikov,Vainshtein(04)] QCD OPE

constraints are satisfied by the sole contributions of pions and the whole
tower of massive axial vectors. No contributions from other fields, at least
in the chiral limit.
Pions dominate at low momenta, full tower of massive axial vector
dominates for Large Euclidean momenta.

» In the literature the MV constraint
P |lead to an increase of the accepted estimate of the HLbL
» was difficult to implement in other models:
For instance MV proposed a model with pointlike WZW at the
vertex with physical photon, while [JegerlehnerNyffeler(09)] got
the MV behaviour using LMD+V TFF's, with an elaborate
choice of the parameters.
» the HW2 seems the first model to satisfy MV, without any of the above
assumptions dispite its simplicity
» axial anomaly plays a fundamantal role in the MV constraint. Nothing
similar for other SD constraints, such as the quark loop limit.



Pions and axial vectors contrib's: Numerical results

aHLbL % 1010 fr /Ne=31MeV fr=93MeV
Help assessing SD corrections to e mp=T76MeV/ Ne=3

aZ’LbL in White Paper
40

aS(m%+n+n') 81 (57+14+1.0) 11.2(7.5+2.1+1.6)
35r \ — quark loop
MV A
Ceeperay | ant(a A4 ) 14 (0440.4406) 1.4 (0.4+0.4+0.6)
- CCDGI (Set 2)

30 \

=25 \
X

HW?2
HW?2 (UV-fit) A

= — excited PS a,ﬁ(aES + aut) 9.6 12.6

5 ===

%05 EE TS aT(ai+ A4 ) 14 (0.44044+06) 1.4 (0.440.4+0.6)
Estimates of the asymptotic
behaviour (from White Paper), 2 11.0 14.0
using different models s ' ’

Table: Results for the longitudinal and transverse contributions

Averaging out the results from the two sets of parameters and using the spread

as an estimate of the uncertainty, our final number for the contribution of
Goldstone modes and axial-vector states is

aAvrrS) — 12.5(1.5)- 1071,



Scalars in HQCD: non minimal 5D Lagrangian

S5 = /dSX\/E(l:YM + Les + Lx + LX)

Lymrcs = —Atr [F(AL/’)NF(L)MN + F(Algng(R)MN] + ctr[ws(L) — ws(R)]
Lx = ptr[DMXTDMX —mAXTX — z28(z - zo)V(X)}

53( = (4 tr [XTXF(A;/?’QI F(R)MN + xxt F(AL/’)N F(L)MN:|

+Cor [XTF(AL/’)NXF(R)MN] .

V(x) = 3p?tr[XTX] — ntr[(XTX)?] is a scalar potential on the

boundary, used it to enforce b.c. on the scalar field.

If the scalar field has a non trivial profile Xo(z), then L% generates syy
vertices from Xo(z)X(x, z)F(’\”/’)VF(V)MN, depending on the parameter

C:C++%C7-



HLbL tensor: One scalar exchange contribution

® o (a8 ~(3) L Ap(a)
I_IHV)\P(qh q2, g3, q4) = / dZ/ dz [Tll; G"” (Z>Z ;S) T34p
_‘_7—1u3/\(a)G(a)(z7 2z t) T;p(a) + 7—{;@(3)6(8)(27 7' u) 7-2'/3%3)] 7
where s = (q1 + q2)°, t = (qu + g3)°, u = (q1 + q2)* and
1O (2) = PP (2)P* (a1, ) + Q5 (2) Q" (a1, ) ,
where the two gauge-invariant tensors
P*(qu, @) = g5 a1 — (a1 - @2)n™”
Q" (a1, ¢2) = gial'al + aidh a5 — (a1 - @)al'as — grqin™

and the holographic form factors

Py(z) =8¢ a2 (2 g)u(z. ),

z
Xo(z) 0:v(z, qi) 0:v(z, qj)
z A @

0¥ (z) = 8¢d™”



Numerical results for the scalars: Fixing the parameters

» Apparently scalar amplitudes do not completely comply with pQCD
constraints (to be better understood)

» Our action has nine parameters: coefficients of bulk operators (A, ¢, p,
C+, mx), the size of the fifth dimension z, and the parameters of the
scalar boundary potential (u, 7).

» For the scalar contributions to the HLbL, the only relevant are: p, z, the
combination ( = (+ + %Q,, myx, and the parameters of the boundary
potential, which can be traded for the quark condensate (Gqg) and .

> We required both UV and IR constraint on ¢ and p to match (SVV)
short-distance and the decay width of the lowest-lying scalars into two
photons

» Flavour breaking, as we did in our paper for the Goldstone and
axial-vector towers, generating copies of the original Lagrangian for each
of the different light scalar states. Only 7, p and ¢, will be
flavour-dependent.



Final results for the scalar contribution

» We have studied also the dependence of v from the mass range (e.g.
my = (450 — 550) MeV). Our estimate for the ¢(500) (certainly not a
narrow resonance) contribution to the HLbL is

ay(0) = (-85+2.0)-107"
orientative, but should correctly captures the right order of magnitude for
the uncertainty.

» The contributions of a9(980) and £(990) can be computed in a less
problematic way: both states are rather narrow.

ap(a0) = —0.29(13) - 107" aj(f) = —0.27(13) - 107
» Effect of higher massive states are found very small due to the peak of of

kinematic kernels around 1 GeV

n=1 n=2 Total
a(o) -8.5(2.0) -0.07(2)  -8.7(2.0)
aéL(ao) -0.29(13)  -0.025(10) -0.32(14)

S(h) -027(13)  -00259) -0.20(14)
a -9(2) -0.12(4) -9(2)

Our final result is ai = —9(2) - 107, rather close to previous estimates.



Conclusions

HQCD model and in particular HW2 have been very effective in clarifying
the role of vector and axial vector fields in fulfilling pQCD short distance
constraints

Thanks to the non renormalization properties of anomaly and the chiral
formalism recovered in HW2, one has s hown complete saturation of the
MV constraint by axial vector resonances and pions, in the chiral limit

These results have been useful to the theoretical community to help
assessing the size of SD corrections to HLbL

We have provided a HQCD estimate of the scalar contribution to the
HLbL, including the (500), a0(980) and f,(980) states together with an
infinite tower of excited scalar states .

In our final result 2, = —9(2) - 107!, and we think that we have given
conservative estimate for the uncertainty is given due mainly to the
o(500) parameters. Adding to other contributions (e.g. pion and axial
vectors) errors linearly, one would find aHLbL a, = 116(17) - 10~*! which
is in agreement with all the recent estimates of the HLbL.

Note, however, he addition of scalar fields into the action, has some effect
on the axial-vector, pion (and also massive pseudoscalars) and it calls for
a more complete re-analysis. An understanding of some SD discrepancies
of HQCD scalar amplitudes would be welcome too.



Back up slides



HLbL tensor: One scalar exchange contribution cont'd

Non vanishing dynamical coefficients for (g — 2) from scalar exchange

_ “ 2 m(a) 2 2 (a) ’ (a)
Ms(@, Q7) = [ dz [ d [P+ (QF + @ + Q@)Y Gz, 25 s)PEY
_ ) 20 R
Ma(Qr, @, 7) = / dz / dz’ [P+ (@ + @ + @)@ Gz, 25 )P,
_ 20 2 @) / (a)

Me(Q1, Q2,7) = dz dz' Py G(a)(z,z u)Qs7

o(@1, @2, 7) / dz/ dz' le (z,7; 5)733 . (4)



Scalar 3-point funct.:Asymptotic behaviour

F 0, ae) = 7 [ dx e (0| T {72, (I 0)}1S2)
= F" )N, B)Pu (a1, g2) + F" (2, 63) Quu (a1, 2) »
with transition form factors for each scalar meson:

Fl(n,a)(q%’qg) _ ngaww/ on( 2) en(2i(2)va(z),

N 2 Xo(z O:v1(2) O;vo(z
R R S A O o
€ 1 2

The decay width of the scalar into two on-shell photons can be expressed in terms of
Fl(n’a)(O, 0) alone as

p(na) _ ma?
vy 4

2
3 |F"(0,0)]

with

N X o An
Fl(""’)(O, 0) = sgdm/ dz@cpf(z) = a;sozggdmE [4J3(wn) — wnda(wn)]



Scalar 3-point funct.:Asymptotic behaviour cont'd

For highly virtual photons, i.e. for large Q, v(z, Q) ~ QzK1(Qz). In terms of
the variables Q* = (@7 + @) and w = (QF — @3)(QF + Q5) ", such that
Q1,2 = Qv/1 £+ w the model then predicts

. (ma); A2 A2 1536  ~. . S0 Anwn

| F. s = g2 g
QA A0 @) = S Cd™ S o i),
i 1152 So Anwn

| F(",a) 27 2y — da'y'y Znn ¢
innoo 2 (@1, Q) 35 ¢ 2 Q& 2(w),

with
fi(w) = 384\/1—W2/ dyy" Ki(yvV1+ w)Ki(yv1 — w)

35 1
= o {30w — 26w3 — 3(w* — 6w? + 5)log (%)}

h(w) = 288/ dyy” Ko(yvV1+ w)Ko(yv1I—w

3 _ 3 9w? — 15 1+w
= Tow’ { 15w + 4w 5 IOg(lfw)]
Notice that that the model does not match with pQCD, which predicts the
asymptotic scalings
(@ Q) ~ Q% and FA(Q,Q@)~Q™*
and the identitv A (w) = H&(w)




Scalar 3-point funct. Asymptotic behaviour cont'd

The model however shows the right asymptotic pQCD scaling for the case of
the < SVV > correlator

M) (g2, q2) = i / d'x / d'y e~ m) (0] T (it (x)j% (¥)j2(0)}[0)

:P (CI1>‘72)PW(CI17CI2)+Q (q1>q2)QHV(q17q2)7

» All momenta much larger than Agep, eg.ql=qg2=q3/2=gq

1650¢ d27” b
Jim r)(q,q) = 23°< o (ququ—q277u»)/ dyy®Ki(2y) [Kf(y)— K3(y)

To be compared with the QCD OPE result

oo $99) (qq>

Jim r(q,q) = (GuGy — G - (5)

» Vector momenta hard and the scalar one soft. To leading order,
a=—-qR=q

Jayy
I|m r ( —q) 6450¢ d

Psoo = 15z QF (9~ anuw) +0(Q7%).  (6)

Again, the scaling is the one expected from the OPE.
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