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Theory vs experiment after the Fermilab measurement

.

The 2021 Fermilab experiment result combined with the previous E821
result has enlarged the discrepancy between experimental and theoretical
(SM) values of aµ = (g − 2)µ/2 from 3.7σ to 4.2σ

Status before Fermilab(21)

Combined Exp(21) 116592061(41)× 1011

Current status of experiment and SM theoretical predictions for aµ ( Muon g-2
collaboration PRL 126 (21) 14181). The theoretical prediction is taken from the
White Paper (Ayoama et. al. Phys.Rept 887 (20) 1-166)



Hadronic contributions to aµ
.
Hadronic Vacuum Polarization (HVP) and Hadronic Light-by-Light scattering (HLbL).
HVP related through unitarity cut to physical e+ − e− cross section.
Only recently dispersion techniques sistematically applied to HLbL (data driven
approach), previous estimates based on phenomenological models

HVP and HLbL Feynman diagrams

Evolution of the theoretical estimates of the
various processes contributing to HLbL

▶ HLbL major source of uncertainty to the hadronic contributions to aµ, and a lot
of effort (and progress) has been done very recently to assess its value.

▶ Recently, lattice collaborations have published values for HVP which greatly
differ with previous estimates and would push the total value of aµ close to the
experimental value. It was a bolt in clear sky, currently under scrutiny.



Theoretical conudrum on HVP

Data driven approach based on unitarity and R-ratio evaluation and
Lattice QCD results give ”incompatible” results. Here are BMW
collaboration result and more recent (june ‘22) investigations

HVP contributions according to BMWc’20 paper

Lattice (green squares), R-ratio method (data
driven approach) (red circles)

A very recent (june 22) compilation of
HVP estimetes (in a particular Euclidean
window)
A.Ce’ et al arXiv:2206.06582

Lattice QCD: green point A.Ce’ et al (22)
and blue points. Red point data driven
analysis of G.Colangelo et al. 2205.12963
[hep-ph]



The Hadronic Light-by-Light Tensor

Πµνλσ(q1, q2, q3) = −i
∫

d4xd4yd4z e−i(q1·x+q2·y+q3·z) < |T{jµem(x)jνem(y)jλem(z)jσem(0)}| >

q4 = q1 + q2 + q3

138 Lorentz structures

Πµνλσ = gµνgλσ Π1 + gµλgνσ Π2 + gµσgνλ Π3

+
∑

i,j=1,2,3

(
gµνqλi q

σ
j Π4

ij + gµλqνi q
σ
j Π5

ij + gµσqνi q
λ
j Π6

ij

+gνλqµi q
σ
j Π7

ij + gνσqµi q
λ
j Π8

ij + gλσqµi q
ν
j Π9

ij

)
+

∑
i,j,k,l=1,2,3

qµi q
ν
j q

λ
k q

σ
l Π10

ijkl

95 linearly independent relations
from gauge invariance =⇒

{q1µ, q2ν , q3ρ, q4σ}Πµνλσ(q1, q2, q3) = 0

Complete crossing symmetric

C14 = {q1 ↔ −q4, µ↔ σ}, C13 = {q1 ↔ q3, µ↔ λ}

The HLbL tensor in the HLbL diagram

µ−(p) µ−(p′)

q4

q2 q1q3

p − q2 p′ + q1

Πµνλσ

43 linearly independent tensor structures

BTT basis: 54 (redundant) tensor
structures, with scalar functions Πi free of
kinematic singularities Colangelo et al.(15)

Πµνλσ =
54∑
i=1

Tµνλσ
i Πi ,



Master Formula for aHLbLµ

aHLbL
µ = − e6

48mµ

∫
d4q1
(2π)4

d4q2
(2π)4

1

q2
1q

2
2(q1 + q2)2

1

(p + q1)2 −m2
µ

1

(p − q2)2 −m2
µ

× Tr
(
(/p +mµ)[γ

ρ, γσ](/p +mµ)γ
µ(/p + /q1

+mµ)γ
λ(/p − /q2

+mµ)γ
ν
)

×
54∑
i=1

(
∂

∂qρ
4

T i
µνλσ(q1, q2, q4 − q1 − q2)

) ∣∣∣∣
q4=0

Πi (q1, q2,−q1 − q2).

Only 19 independent linear combinations of the 54 Tµνρλ
i contribute to aHLbL

µ .
Using Gegenbauer polynomials techniques (Knecht Nyffeler (01), the symmetry
of the loop integral and the propagators, there remain 12 different integrals
containing 12 coefficients Π̄i (q1, q2,−q1 − q2).

aHLbL
µ =

2α3

3π2

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ
√

1− τ 2Q3
1Q

3
2

12∑
i=1

T̄i (Q1,Q2, τ)Π̄i (Q1,Q2, τ),

where Q1 := |Q1|, Q2 := |Q2|. Π̄i evaluated for the reduced kinematics

q2
1 = −Q2

1 , q2
2 = −Q2

2 , q2
3 = −Q2

3 = −Q2
1 − 2Q1Q2τ − Q2

2 , q2
4 = 0.

Integral kernels expressionsT̄i (Q1,Q2, τ), in Colangelo et al.(15&17)



TFF and one-pion exchange HLbL diagrams

Leading contribution in the Large-Nc and chiral limit

HLbL One-pion
exchange diagrams.

µ− µ−

µ−µ−

µ− µ−

Ansätze for FPγ∗γ∗(q2
1 , q

2
2)

WZW :−
Nc

12π2fπ

VMD :−
Nc

12π2fπ

m2
V

(q21 −m2
V )

m2
V

(q22 −m2
V )

LMD :
fπ

3

q21 + q22 − (Ncm
4
V /(4π

2f 2π ))

(q21 −m2
V )(q

2
2 −m2

V )

LMD + V :
fπ

3

P6(q
2
1 , q

2
2 ,M

2
V1
,M2

V2
; h1, h2, h5)

(q21 −m2
V1
)(q22 −m2

V1
)(q21 −m2

V2
)(q22 −m2

V2
)

Knecht, Nyffeler(01)

DIP :− Nc

12π2fπ

(
1 + λ

(
q2
1

(q2
1 −m2

V1
)
+

q2
2

(q2
2 −m2

V2
)

)

+η
∑
i=1,2

q2
1q

2
2

(q2
1 −m2

Vi
)(q2

2 −m2
Vi
)

)
C, Cata,D’Ambrosio(11)



aHLbL,π
0

µ estimates

aHLbL,π0

µ × 10−9

VMD 5.7 KN(01)

LMD+V 6.3 KN(01)

DIP 6.58 CCD(11)

⟨HQCD’s⟩ 5.9(2) LMR(19)

DVR interp. 5.64(25) DVR(19)

Lattice 5.97± 0.23 GMN(19)

⟨HQCD’s⟩LMR(19)

aHLbL,π0

µ × 10−9

SS 4.83

HW1 6.13

HW2 5.66

SW 5.92

Danilkin,Redmer,Vanderaeghen(19), Gérardin,Meyer, Nyffeler(19)

DIP refers to an “Hybrid” HQCD approach of C, Cata, D’Ambrosio (11),
updated and extended by Leutgelb, Mager and Rebhan (19)



Holographic QCD

Good features
▶ Lagrangian formulation (although in 5D)

▶ Leading Short Distance (SD) from pQCD reproduced by HQCD models
with (asymptotic) 5D AdS metric

▶ In AdS slice (IR cut-off) (Hard-Wall models) or with also quadratic
dilaton bakground (Soft-Wall models), there are an infinite number of
(KK) resonances saturating the channels as expected for Large-Nc QCD

▶ Small numer of free parameters (e.g. 5D gauge coupling and size of the
extradimension)

▶ Many explicit analytic calculations

Not-so-good features

▶ χSB realized in different ways (but we have our favourite model!)

▶ Different kind of resonances mass spectra (Regge vs non Regge)

▶ One top-down approach (Sakai-Sugimoto) not even asymptotically AdS,
but giving reasonable low-energy hadronic physics



Holographic models of QCD

SS: Sakai,Sugimoto(05)
HW1: Erlich, Katz, Son, Stephanov(05) ,Da Rold, Pomarol(05)
HW2: Hirn,Sanz(05)
SW: Karch, Katz, Son, Stephanov(06)

... and many descendants



Holographic models of QCD: ingredients & recipes

HQCD models inspired by AdS/CFT duality between a 4D (conformal)
(Large-Nc) gauge theory at strong coupling and a (classical) 5D field
theory in a curved Anti-de Sitter space

exp(iW [s(x)]) ≡
〈
exp

(
i

∫
d4x s(x)O∆(x)

)〉
QCD

= exp (i S5(Φ0(z , x)))

Maldacena (97), Gubser Klebanov Polyakov (98), Witten (98)

z

xΜ

z0

5D

4D

F(x,z) Fn
(x,z)

Hard-Wall

mn
2

= n2
sHxL ODHxL

wHzL = 1 � z
4D 5D

operator O∆(x) dual field Φ(x , z)
source s(x) coupled to O∆(x) on-shell Φ0(x , z)→ s(x)
conformal dimension ∆ mass mΦ:

m2
Φ = (∆− p)(∆ + p − 4)

U(Nf )L × U(Nf )R U(Nf )L × U(Nf )R
global symmetry gauge symmetry
vector current q̄γµta q vaµ(x)← gauge field V a

µ(x , z)
axial current q̄γµγ5ta q aaµ(x)← gauge field Aa

µ(x , z)
quark bilinear q̄ta q s(x)← scalar field X a(x , z)

confinement

{
Hard-Wall: sharp cut-off 0 ≤ z ≤ z0

Soft-Wall: dilaton potential

Chiral Symmetry Breaking

{
5D profile X (z)

5D parity/ ChSB boundary conditions



(Large-Nc) QCD correlators from on-shell S5

▶ 2-point Functions: VV, AA and SS Current-Current Correlators

⟨0|T {Jµ
V (x)J

ν
V (y)} |0⟩ ⇐⇒ δ2S5

δvµ(x)δvν(y)

⟨0|T {Jµ
A (x)J

ν
A (y)} |0⟩ ⇐⇒ δ2S5

δaµ(x)δaν(y)

⟨0|T {JS(x)JS(y)} |0⟩ ⇐⇒ δ2S5

δs(x)δs(y)

▶ 3-point Functions: The Pion Transition Form Factor

⟨π(x)|T {Jµ
e.m.(y)J

ν
e.m.(z)} |0⟩ ⇐⇒ δ3S5

δπ(x)δvµ
0 (y)δv

ν
0 (z)

▶ 4-point Function: The Hadronic Light-by-Light Tensor〈
0|T

{
Jµ
e.m.(x)J

ν
e.m.(y)J

λ
e.m.(z)J

σ
e.m.(w)

}
|0
〉

⇐⇒ δ4S5

δvµ
0 (x)δv

ν
0 (y)δv

λ
0 (z)δv

σ
0 (w)



HQCD: minimal 5D Lagrangian

S5 =

∫
d5x

√
g
(
LYM + LX

)
+ SCS

LYM = −λ tr
[
FMN
(L) F(L)MN + FMN

(R) F(R)MN

]
LX = ρ tr

[
DMX †DMX −m2

XX
†X
]

SCS =

∫
tr
[
ω5(L)− ω5(R)

]
▶ AdS5 metric ds25 =

1

z2

(
dx2

µ − dz2
)
. 0 ≤ z ≤ z0, with z0 ∝ 1/mρ

▶ X transforms as a bifundamental of U(3)L × U(3)R : X → gLXg
†
R

▶ FMN = ∂MAN − ∂NAM − i [AM ,AN ] and AL,R = V ∓ A,

▶ In the HW1 models the 5D scalar field X (x , z), dual to q̄q, induces χSB,
by acquiring a non trivial 5D profile X = X0(z)

▶ In HW2 there is no 5D scalar field. χSB broken by different boundary
conditions for Vµ and Aµ on the IR wall z0 and the 4D chiral field U(x)
appears in the zero mode part of Aµ(x , z).

▶ The Chern-Simons SCS term describes anomalous processes



3-point Function: Pion TFF from HW2

∫
d4x e−iq1·x ⟨P(q1 + q2)|T {Jµ

e.m.(x)J
ν
e.m.(0)} |⟩ = ϵµνρσq1 ρq2σFPγ∗γ∗(Q2

1 ,Q
2
2 )

where Q2
1,2 = −q2

1,2

For P = π0, real photons normalization

Fπ0γ∗γ∗(0, 0) =
Nc

12π2fπ
(pointlike WZW vertex)

Normalized TFF K(Q2
1 ,Q

2
2 ) ≡ FPγ∗γ∗(Q2

1 ,Q
2
2 )/FPγ∗γ∗(0, 0) → K(0, 0) = 1

Where is the pion field in HW2?

Vµ(x , z) = vµ(x) + V (reson)
µ (x , z)

Aµ(x , z) =

(
aµ(x) +

∂µπ(x)

fπ

)
α(z) + A(reson)

µ (x , z)

Anomalous AVV amplitudes from trilinear terms in the CS action

S
(3)
CS =

Nc

24π2

∫
tr
(
L(dL)2 − R(dR)2

)
with L = V + A, R = V − A



3-point Functions: The Pion Transition Form Factor

K(Q2
1 ,Q

2
2 ) = −

∫ z0
0

v(Q1, z)v(Q2, z)∂zα(z)dz =⇒

v(q2, z): vector bulk-to-boundary propagator, α: pion “wave function”

Low-Q2

K(Q2
1 ,Q

2
2 ) = 1 + α̂ (Q2

1 + Q2
2 )

+ β̂Q2
1Q

2
2 + γ̂ (Q4

1 + Q4
2 ) + ...

SS

HW1

HW2

SW

DIP1

DIP2

DRV4
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Q
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Short distance Q2 ≫ ΛQCD

KpQCD(Q2, 0) =
8π2f 2π
Q2

KpQCD(Q2,Q2) =
8π2f 2π
3Q2

DIP1

DIP2
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Leutgeb,Mager,Rebhan(19)



4-point Function: HLbL tensor from HW2
C., Cata’, D’Ambrosio, Greynat, Iyer (19), Leutgeb, Rebhan(19)

qν2

qµ1

qσ4

qλ3

(a)
qν2

qµ1

qσ4

qλ3

(b)

qν2

qµ1

qσ4

qλ3

(c)
qν2

qµ1

qσ4

qλ3

(d)

qν2

qµ1

qσ4

qλ3

(e)
qν2

qµ1

qσ4

qλ3

(f )

Pion and Massive axial resonances anomalous AVV
vertices from SCS

Propagators (from SYM)

(Massive) axial resonances

Gµν
A

5D axial Green function

Gµν
A (z, z ′; q2) =

GT
A (z, z ′; q2)Pµν

T (q) + GL
A(z, z

′)Pµν
L (q)

Pµν
T (q) =

(
gµν −

qµqν

q2

)
,

Pµν
L (q) =

qµqν

q2

Pion propagator

π

i

q2 −m2
π



4-point Function: HLbL tensor from HW2 contn’d

Πµνλσ = Π
(π, A)µνλσ
L︸ ︷︷ ︸

pion & massive axial reson.

+ Π
(A)µνλσ
T︸ ︷︷ ︸

massive axial reson.

where, for the massive resonances contributions

Π
(A)µνλσ
L,T =

(
gµµ′

−
qµ1 q

µ′

1

q21

)(
gνν′

−
qν2 q

ν′
2

q22

)(
gλλ′

−
qλ3 q

λ′
3

q23

)(
gσσ′

−
qσ4 q

σ′
4

q24

)
︸ ︷︷ ︸

transverse projectors on external vector legs

× εµ′ν′αβ ελ′σ′γδ︸ ︷︷ ︸
anomalous couplings

× Pαγ
L,T︸ ︷︷ ︸

L,T proj. in GA

× Aβδ
L,T︸ ︷︷ ︸

z and z ′ integrals

Aβδ
L,T contains combinations of the form qβa q

δ
c G

L,T
A (qa, qb; qc , qd ) with the convolution

integrals

GLA(qa, qb; qc , qd ) =
∫ z0

0
dz

∫ z0

0
dz ′v(z, q2a)∂zv(z, q

2
b)G

L
A(z, z

′)v(z ′, q2c )∂z′v(z
′, q2d )

GTA (qa, qb; qc , qd ) =

∫ z0

0
dz

∫ z0

0
dz ′v(z, q2a)∂zv(z, q

2
b)G

T
A (z, z ′; qa+qb)v(z

′, q2c )∂z′v(z
′, q2d )



Short distance constraints
Two different kinematic limit Large Euclidean momenta in two different
kinematic limits Quark loop and Melnikov-Vainshtein

Quark loop: Q2
1 ∼ Q2

2 ∼
Q2

3 ≫ Λ2
QCD , Q4 = 0

MV limit: Q1 ∼ −Q2 and
Q2

1 ∼ Q2
2 ≫ Q2

3 ≫ Λ2
QCD

▶ Quark loop: For the longitudinal component of the HLbL tensor, the quark
loop diagram in QCD gives:

W∥
12;34 = −

4

9π2Q4
∼ −

0.44

π2Q4
. (1)

This limit cannot be fulfilled by the pion contribution, which falls off like Q−6.
The relevant piece comes instead from the axial-vector tower:

W∥
12;34 = −

Nc

3π2Q4

∫ ∞

0
x4K1(x)

3 dx ∼ −
0.36

π2Q4
. (2)

About 80% of the OPE coefficient. This mismatch could be due other hadronic
contributions not included in our model (e.g., massive pseudoscalar mesons)



Short distance constraints cont’d
▶ Melnikov-Veinshtein limit: The key object is the product of two of the

electromagnetic currents in the HLbL tensor

Wµν(q1, q2) =

∫
d4x

∫
d4y e i(q1·x+q2·y)T

{
jµem(x), jνem(y)

}
In the kinematical limit Q1 = ξQ − Q3/2 ; Q2 = −ξQ − Q3/2 where ξ is large
and all momenta are Euclidean. OPE gives:

lim
ξ→∞

Wµν =
1

ξ

2i

Q2
ϵµνλρQλ

∑
a

d̂aγγ
∫

d4z e−iq3·z j
(a)
5ρ (z) , j

(a)
5ρ (z) = q̄Q̂2γργ5q

Thus, axial anomaly enters through the VVA 3-point function. The contribution
of the full axial-vector tower is the relevant piece

Jσ⊥(z,Q,Q3) = −
2Qσ

Q2
a(z,Q3)

[
1

3
+

1

5

(
Q3

Q

)2

+ · · ·
]

Jσ∥ (z,Q) = −
2Qσ

3Q2
α(z) .

The longitudinal piece is exact to all orders in Q3 (anomaly non renormalization,
correctly implemented in the model).
Cancellation between the pion and longitudinal axial-vector contributions in the
chiral limit.
The pion contribution alone, i.e., ω

(π)
L (Q3) ∼ 2Nc

Q2
3+m2

π
Fπγγ(Q3, 0) , is clearly

incompatible with ω ∼ Q−2
3 in the chiral limit.

No single particle exchange can saturate ωL .



Relevance of the short distance constraints

Asymptotic behaviour of the HW2 4-point amplitude for large Euclidean
momenta

▶ Main result: Melnikov-Vainshtein [Melnikov,Vainshtein(04)] QCD OPE
constraints are satisfied by the sole contributions of pions and the whole
tower of massive axial vectors. No contributions from other fields, at least
in the chiral limit.

Pions dominate at low momenta, full tower of massive axial vector
dominates for Large Euclidean momenta.

▶ In the literature the MV constraint

▶ lead to an increase of the accepted estimate of the HLbL
▶ was difficult to implement in other models:

For instance MV proposed a model with pointlike WZW at the
vertex with physical photon, while [JegerlehnerNyffeler(09)] got
the MV behaviour using LMD+V TFF’s, with an elaborate
choice of the parameters.

▶ the HW2 seems the first model to satisfy MV, without any of the above
assumptions dispite its simplicity

▶ axial anomaly plays a fundamantal role in the MV constraint. Nothing
similar for other SD constraints, such as the quark loop limit.



Pions and axial vectors contrib’s: Numerical results

Help assessing SD corrections to
aHLbLµ in White Paper

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

Qmin [GeV]

∆
a
L
S
D
C

µ
×
10

1
1

quark loop

MV
CCDGI (Set 1)

CCDGI (Set 2)

HW2
HW2 (UV-fit)

excited PS

Estimates of the asymptotic
behaviour (from White Paper),
using different models

aHLbL
µ × 1010 fπ/Nc=31MeV

mρ=776MeV
fπ=93MeV

Nc=3

aPS
µ (π0 + η + η′) 8.1 (5.7+1.4+1.0) 11.2 (7.5+2.1+1.6)

a
AL
µ (a1 + f1 + f ∗1 ) 1.4 (0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

aLµ(a
PS
µ + a

AL
µ ) 9.6 12.6

aTµ (a1 + f1 + f ∗1 ) 1.4 (0.4+0.4+0.6) 1.4 (0.4+0.4+0.6)

aµ 11.0 14.0

Table: Results for the longitudinal and transverse contributions

Averaging out the results from the two sets of parameters and using the spread
as an estimate of the uncertainty, our final number for the contribution of
Goldstone modes and axial-vector states is

a(AV+PS)
µ = 12.5(1.5) · 10−10 .



Scalars in HQCD: non minimal 5D Lagrangian

S5 =

∫
d5x

√
g
(
LYM + LCS + LX + L′

X

)
LYM+CS = −λ tr

[
FMN
(L) F(L)MN + FMN

(R) F(R)MN

]
+ c tr

[
ω5(L)− ω5(R)

]
LX = ρ tr

[
DMX †DMX −m2

XX
†X − zδ(z − z0)V (X )

]
L′

X = ζ+ tr
[
X †XFMN

(R) F(R)MN + XX †FMN
(L) F(L)MN

]
+ζtr

[
X †FMN

(L) XF(R)MN

]
.

▶ V (x) = 1
2
µ2 tr

[
X †X

]
− η tr

[
(X †X )2

]
is a scalar potential on the

boundary, used it to enforce b.c. on the scalar field.

▶ If the scalar field has a non trivial profile X0(z), then L′
X generates sγγ

vertices from X0(z)X (x , z)FMN
(V ) F(V )MN , depending on the parameter

ζ = ζ+ + 1
2
ζ−.



HLbL tensor: One scalar exchange contribution

Πµνλρ(q1, q2, q3, q4) =

∫ z0

ϵ

dz

∫ z0

ϵ

dz ′[T
µν(a)
12 G (a)(z , z ′; s)T

λρ(a)
34

+T
µλ(a)
13 G (a)(z , z ′; t)T

νρ(a)
24 + T

µρ(a)
14 G (a)(z , z ′; u)T

νλ(a)
23 ] ,

where s = (q1 + q2)
2, t = (q1 + q3)

2, u = (q1 + q4)
2 and

T
µν(a)
ij (z) = P(a)

ij (z)Pµν(qi , qj) +Q(a)
ij (z)Qµν(qi , qj) ,

where the two gauge-invariant tensors

Pµν(q1, q2) = qµ
2 q

ν
1 − (q1 · q2)ηµν

Qµν(q1, q2) = q2
2q

µ
1 q

ν
1 + q2

1q
µ
2 q

ν
2 − (q1 · q2)qµ

1 q
ν
2 − q2

2q
2
1η

µν ,

and the holographic form factors

P(a)
ij (z) = 8ζd̂aγγ X0(z)

z
v(z , qi )v(z , qj) ,

Q(a)
ij (z) = 8ζd̂aγγ X0(z)

z

∂zv(z , qi )

q2
i

∂zv(z , qj)

q2
j

. (3)



Numerical results for the scalars: Fixing the parameters

▶ Apparently scalar amplitudes do not completely comply with pQCD
constraints (to be better understood)

▶ Our action has nine parameters: coefficients of bulk operators (λ, c, ρ,
ζ±, mX ), the size of the fifth dimension z0 and the parameters of the
scalar boundary potential (µ, η).

▶ For the scalar contributions to the HLbL, the only relevant are: ρ, z0, the
combination ζ = ζ+ + 1

2
ζ−, mX , and the parameters of the boundary

potential, which can be traded for the quark condensate ⟨q̄q⟩ and γ.

▶ We required both UV and IR constraint on ζ and ρ to match ⟨SVV ⟩
short-distance and the decay width of the lowest-lying scalars into two
photons

▶ Flavour breaking, as we did in our paper for the Goldstone and
axial-vector towers, generating copies of the original Lagrangian for each
of the different light scalar states. Only γ, ρ and ζ, will be
flavour-dependent.



Final results for the scalar contribution

▶ We have studied also the dependence of γ from the mass range (e.g.
mσ = (450− 550) MeV). Our estimate for the σ(500) (certainly not a
narrow resonance) contribution to the HLbL is

aSµ(σ) = (−8.5± 2.0) · 10−11

orientative, but should correctly captures the right order of magnitude for
the uncertainty.

▶ The contributions of a0(980) and f0(990) can be computed in a less
problematic way: both states are rather narrow.

aSµ(a0) = −0.29(13) · 10−11; aSµ(f0) = −0.27(13) · 10−11

▶ Effect of higher massive states are found very small due to the peak of of
kinematic kernels around 1 GeV

n = 1 n = 2 Total
aSµ(σ) -8.5(2.0) -0.07(2) -8.7(2.0)
aSµ(a0) -0.29(13) -0.025(10) -0.32(14)
aSµ(f0) -0.27(13) -0.025(9) -0.29(14)

aSµ -9(2) -0.12(4) -9(2)

Our final result is aSµ = −9(2) · 10−11, rather close to previous estimates.



Conclusions

▶ HQCD model and in particular HW2 have been very effective in clarifying
the role of vector and axial vector fields in fulfilling pQCD short distance
constraints

▶ Thanks to the non renormalization properties of anomaly and the chiral
formalism recovered in HW2, one has s hown complete saturation of the
MV constraint by axial vector resonances and pions, in the chiral limit

▶ These results have been useful to the theoretical community to help
assessing the size of SD corrections to HLbL

▶ We have provided a HQCD estimate of the scalar contribution to the
HLbL, including the σ(500), a0(980) and f0(980) states together with an
infinite tower of excited scalar states .

▶ In our final result aSµ = −9(2) · 10−11, and we think that we have given
conservative estimate for the uncertainty is given due mainly to the
σ(500) parameters. Adding to other contributions (e.g. pion and axial
vectors) errors linearly, one would find aHLbL aµ = 116(17) · 10−11 which
is in agreement with all the recent estimates of the HLbL.

▶ Note, however, he addition of scalar fields into the action, has some effect
on the axial-vector, pion (and also massive pseudoscalars) and it calls for
a more complete re-analysis. An understanding of some SD discrepancies
of HQCD scalar amplitudes would be welcome too.



Back up slides



HLbL tensor: One scalar exchange contribution cont’d

Non vanishing dynamical coefficients for (g − 2) from scalar exchange

Π̄3(Q1,Q2, τ) =

∫ z0

ϵ

dz

∫ z0

ϵ

dz ′
[
P(a)

12 + (Q2
1 + Q2

2 + Q1Q2τ)Q(a)
12

]
G(a)(z , z

′; s)P(a)
34 ,

Π̄4(Q1,Q2, τ) =

∫ z0

ϵ

dz

∫ z0

ϵ

dz ′
[
P(a)

13 + (Q2
1 + Q2

2 + Q1Q2τ)Q(a)
13

]
G(a)(z , z

′; t)P(a)
24 ,

Π̄8(Q1,Q2, τ) =

∫ z0

ϵ

dz

∫ z0

ϵ

dz ′P(a)
14 G(a)(z , z

′; u)Q(a)
23 ,

Π̄9(Q1,Q2, τ) =

∫ z0

ϵ

dz

∫ z0

ϵ

dz ′Q(a)
12 G(a)(z , z

′; s)P(a)
34 . (4)



Scalar 3-point funct.:Asymptotic behaviour

Γ
(n,a)
µν (q1, q2) = i

∫
d4x e−iq1·x ⟨0|T{jµem(x)jνem(0)}|Sa

n ⟩

= F
(n,a)
1 (q21 , q

2
2)Pµν(q1, q2) + F

(n,a)
2 (q21 , q

2
2)Qµν(q1, q2) ,

with transition form factors for each scalar meson:

F
(n,a)
1 (q21 , q

2
2) = 8ζd̂aγγ

∫ z0

ϵ
dz

X0(z)

z
φS
n (z)v1(z)v2(z) ,

F
(n,a)
2 (q21 , q

2
2) = 8ζd̂aγγ

∫ z0

ϵ
dz

X0(z)

z
φS
n (z)

∂zv1(z)

q21

∂zv2(z)

q22
.

The decay width of the scalar into two on-shell photons can be expressed in terms of

F
(n,a)
1 (0, 0) alone as

Γ
(n,a)
γγ =

πα2

4
m3

n

∣∣∣F (n,a)
1 (0, 0)

∣∣∣2 .

with

F
(n,a)
1 (0, 0) = 8ζd̂aγγ

∫ z0

ϵ
dz

X0(z)

z
φS
n (z) = 8s0z

2
0 ζd̂

aγγ An

ω2
n

[4J3(ωn)− ωnJ4(ωn)]



Scalar 3-point funct.:Asymptotic behaviour cont’d

For highly virtual photons, i.e. for large Q, v(z ,Q) ∼ QzK1(Qz). In terms of
the variables Q2 = 1

2
(Q2

1 + Q2
2 ) and w = (Q2

1 − Q2
2 )(Q

2
1 + Q2

2 )
−1, such that

Q1,2 = Q
√
1± w the model then predicts

lim
Q2→∞

F
(n,a)
1 (Q2

1 ,Q
2
2 ) =

1536

35
ζd̂aγγ s0

z40

Anωn

Q6
f1(w) ,

lim
Q2→∞

F
(n,a)
2 (Q2

1 ,Q
2
2 ) =

1152

35
ζd̂aγγ s0

z40

Anωn

Q8
f2(w) ,

with

f1(w) =
35

384

√
1− w2

∫ ∞

0
dyy7K1(y

√
1 + w)K1(y

√
1− w)

=
35

32w7

[
30w − 26w3 − 3(w4 − 6w2 + 5) log

(
1 + w

1− w

)]
f2(w) =

35

288

∫ ∞

0
dyy7K0(y

√
1 + w)K0(y

√
1− w

=
35

12w7

[
−15w + 4w3 −

9w2 − 15

2
log

(
1 + w

1− w

)]
Notice that that the model does not match with pQCD, which predicts the

asymptotic scalings

F1(Q
2,Q2) ∼ Q−2, and F2(Q

2,Q2) ∼ Q−4

and the identity f1(w) = f2(w)



Scalar 3-point funct. Asymptotic behaviour cont’d
The model however shows the right asymptotic pQCD scaling for the case of
the < SVV > correlator

Γ(a)
µν(q2, q2) = i2

∫
d4x

∫
d4y e−i(q1·x+q2·y)⟨0|T{jµem(x)jνem(y)jaS(0)}|0⟩

= P̄(a)(q2
1 , q

2
2)Pµν(q1, q2) + Q̄(a)(q2

1 , q
2
2)Qµν(q1, q2),

▶ All momenta much larger than ΛQCD , e.g.q1 = q2 = q3/2 ≡ q

lim
q2→∞

Γ(a)
µν(q, q) =

16s0ζ

z30

d̂aγγ

Q4
(qµqν − q2ηµν)

∫ ∞

0

dyy 6K1(2y)
[
K 2

1 (y)− K 2
0 (y)

]
.

To be compared with the QCD OPE result

lim
q2→∞

Γ(a)
µν(q, q) = 2d̂aγγ ⟨q̄q⟩

Q4
(qµqν − q2ηµν) . (5)

▶ Vector momenta hard and the scalar one soft. To leading order,
q1 = −q2 ≡ q

lim
q2→∞

Γ(a)
µν(q,−q) =

64s0ζ

15z30

d̂aγγ

Q4
(qµqν − q2ηµν) +O(Q−6) . (6)

Again, the scaling is the one expected from the OPE.
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