

QCD@Work-International Workshop on QCD-Theory and Experiment

<u>OUTLINE</u>

Standard Hadrons Exotic Hadrons QCD Sum Rules Semileptonic and nonleptonic decays Concluding Remarks

Standard Hadrons

Meson

Baryon

Classification of basic particles: 12 basic fermions, 4 basic bosons and Higgs boson

In addition to standard particles, there might exist hadrons with different quark-gluon structures, which cannot be included into the ordinary $q\bar{q}$ and qqq!

• Tetraquarks observed by various Collaborations:

X(3872) : 2003 Belle D_{sI} (2632) : 2004 Fermilab SELEX Z(4430): 2007 Belle Y(4140) : 2009 Fermilab, 2012 CMS, 2013 D0, Belle X *Z_c*(3900) : 2013 BESIII, Belle Z(4430) : 2014 LHCb X(5568) : Şubat 2016 D0, LHCb X ve CMS X X(4274), X(4500) ve X(4700) : Haziran 2016 LHCb *X*₀(2900), *X*₁(2900) : 2020 LHCb X(6900) : 2020 LHCb *Z_{cs}*(3985) : 2020 BESIII X(4630) : 2021 LHCb

- It will help to understand new physics (extra dimensions, supersymmetry...) models.
- It will provide information about the perturbative and non-perturbative nature of QCD.
- \succ It will help analyze the experiments that have been done.
- \succ It will shed light on the experiments to be done.

Quantum Chromodynamics (QCD)

27-30 June 2022 QCD@Work-International Workshop on QCD-Theory and Experiment

Correlation Function

Aim: To create a correlation function expressed in terms of interpolating current.! The correlation function injects quarks at the origin and analyze the evolution of quarks to the space-time point x.

Two-point correlation function:

$T^{AV}_{b:\overline{s}} \to Z^0_{b:\overline{s}} l \overline{v}_l$ Semileptonic Decay

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

Why are semileptonic decays important?

- The experiment results obtained for weak decay channels do not match with the standard model prediction.
- There are predictions that this inconsistency may have an impact on new physics (extra dimensions, supersymmetry...).
- Studies on semileptonic channels of exotic particles will be compared with experimental results and this uncertainty in the literature will be tried to be explained.
- > It will help to understand new physics models.

$$T^{AV}_{b:\overline{s}} \to Z^0_{b:\overline{s}} l \overline{v}_l$$
 Semileptonic Decay

• Spectroscopic parameters of the axial-vector $T_{b:\bar{s}}^{AV}$ and scalar $Z_{b:\bar{s}}^{0}$ tetraquarks:

$$\Pi_{\mu\nu}(p) = i \int d^4x e^{ipx} \langle 0|\mathcal{T}\{J_{\mu}(x)J_{\nu}^{\dagger}(0)\}|0\rangle,$$

$$\Pi(p) = i \int d^4x e^{ipx} \langle 0|\mathcal{T}\{J_{\mathcal{Z}}(x)J_{\mathcal{Z}}^{\dagger}(0)\}|0\rangle.$$
Two-point correlation function

The phenomenological side:

$$\Pi_{\mu\nu}^{\text{Phys}}(p) = \frac{\langle 0|J_{\mu}|T_{b;\overline{s}}^{\text{AV}}(p)\rangle\langle T_{b;\overline{s}}^{\text{AV}}(p)|J_{\nu}^{\dagger}|0\rangle}{m_{\text{AV}}^{2} - p^{2}} + \cdots$$

$$\langle 0|J_{\mu}|T_{b;\overline{s}}^{\text{AV}}(p)\rangle = m_{\text{AV}}f_{\text{AV}}\epsilon_{\mu},$$

$$\Pi_{\mu\nu}^{\text{Phys}}(p) = \frac{m_{\text{AV}}^{2}f_{\text{AV}}^{2}}{m_{\text{AV}}^{2} - p^{2}} \left(-g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{m_{\text{AV}}^{2}}\right) + \cdots$$

$$\Pi^{\text{Phys}}(p) = \frac{m_{\text{AV}}^{2}f_{\text{AV}}^{2}}{m_{\text{AV}}^{2} - p^{2}} \left(-g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{m_{\text{AV}}^{2}}\right) + \cdots$$

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$$T^{AV}_{b:\overline{s}} o Z^0_{b:\overline{s}} l \overline{v}_l$$
 Semileptonic Decay

The QCD side:

$$\begin{split} J_{\mu}(x) &= \left[b_{a}^{T}(x) C \gamma_{\mu} b_{b}(x) \right] \left[\overline{u}_{a}(x) \gamma_{5} C \overline{s}_{b}^{T}(x) \right] \\ \Pi_{\mu\nu}(p) &= i \int d^{4} x e^{ipx} \langle 0 | \mathcal{T} \{ J_{\mu}(x) J_{\nu}^{\dagger}(0) \} | 0 \rangle, \\ J_{\mathcal{Z}}(x) &= \left[b_{a}^{T}(x) C \gamma_{5} c_{b}(x) \right] \left[\overline{u}_{a}(x) \gamma_{5} C \overline{s}_{b}^{T}(x) \\ &- \overline{u}_{b}(x) \gamma_{5} C \overline{s}_{a}^{T}(x) \right]. \\ \Pi(p) &= i \int d^{4} x e^{ipx} \langle 0 | \mathcal{T} \{ J_{\mathcal{Z}}(x) J_{\mathcal{Z}}^{\dagger}(0) \} | 0 \rangle. \end{split}$$

$$\begin{split} \Pi^{OPE}(p) &= i \int d^{4} x e^{ipx} \mathrm{Tr} \left[\gamma_{5} \overline{s}_{b}^{ad}(x) \gamma_{5} S_{b}^{bb'}(x) \right] \\ &\times \left\{ \mathrm{Tr} \left[\gamma_{5} \overline{s}_{b}^{ad}(x) \gamma_{5} S_{c}^{bb'}(x) \right] \\ &\times \left\{ \mathrm{Tr} \left[\gamma_{5} \overline{s}_{b}^{ad}(x) \gamma_{5} S_{c}^{bb'}(x) \right] \\ &\times \left\{ \mathrm{Tr} \left[\gamma_{5} \overline{s}_{b}^{b'}(x) \gamma_{5} S_{c}^{ad}(x) \gamma_{5} S_{c}^{bb'}(x) \right] \\ &\times \left\{ \mathrm{Tr} \left[\gamma_{5} \overline{s}_{b}^{b'}(x) \gamma_{5} S_{a}^{b'}(x) \right] - \mathrm{Tr} \left[\gamma_{5} \overline{s}_{b}^{a'}(x) \gamma_{5} S_{a}^{d'b}(-x) \\ &\times \gamma_{5} S_{a}^{b'a}(-x) \gamma_{5} S_{a}^{b'b}(-x) \right] \\ &+ \mathrm{Tr} \left[\gamma_{5} \overline{s}_{a}^{d'}(-x) \gamma_{5} S_{a}^{b'b}(-x) \right] \right\}. \end{split}$$

QCD Sum Rules

27-30 June 2022 QCD@Work-International Workshop on QCD-Theory and Experiment

$T_{b:\overline{s}}^{AV} \to Z_{b:\overline{s}}^{0} l \overline{v}_{l}$ Semileptonic Decay

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$$T_{b:\overline{s}}^{AV}
ightarrow Z_{b:\overline{s}}^{0} l \overline{v}_{l}$$
 Semileptonic Decay

 $m_{\rm AV} = (10215 \pm 250) \text{ MeV},$ $f_{\rm AV} = (2.26 \pm 0.57) \times 10^{-2} \text{ GeV}^4$

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

 $T_{h:\overline{s}}^{AV} \rightarrow Z_{h:\overline{s}}^{0} l \overline{v}_{l}$ Semileptonic Decay

 $m_{\mathcal{Z}} = (6770 \pm 150) \text{ MeV},$ $f_{\mathcal{Z}} = (6, 3 \pm 1.3) \times 10^{-3} \text{ GeV}^4$

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$T^{AV}_{b:\overline{s}} \to Z^0_{b:\overline{s}} l \overline{v}_l$ Semileptonic Decay

• The effective Hamiltonian to describe the subprocess $b \rightarrow c l \bar{v}$ at the tree-level is given by the expression.

$$\mathcal{H}^{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{bc} \bar{c} \gamma_\mu (1 - \gamma_5) b \bar{l} \gamma^\mu (1 - \gamma_5) \nu_l$$

 $G_{\mbox{\scriptsize F}}$ is the Fermi coupling contant

 V_{bc} is the corresponding element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$$T^{AV}_{b:\overline{s}} o Z^0_{b:\overline{s}} l \overline{v}_l$$
 Semileptonic Decay

• Sandwiching the H^{eff} between the initial and final tetraquarks we get the matrix element for the weak transition current

$$J_{\mu}^{\mathrm{tr}} = \overline{c} \gamma_{\mu} (1 - \gamma_5) b$$

$$\begin{split} \langle \mathcal{Z}_{b;\overline{s}}^{0}(p')|J_{\mu}^{\mathrm{tr}}|T_{b;\overline{s}}^{\mathrm{AV}}(p)\rangle =& \widetilde{G}_{0}(q^{2})\epsilon_{\mu} + \widetilde{G}_{1}(q^{2})(\epsilon p')P_{\mu} \\ &+ \widetilde{G}_{2}(q^{2})(\epsilon p')q_{\mu} \\ &+ \mathrm{i}\widetilde{G}_{3}(q^{2})\varepsilon_{\mu\nu\alpha\beta}\epsilon^{\nu}p^{\alpha}p'^{\beta}. \end{split}$$

 $\begin{array}{c} \longrightarrow & P_{\mu} = \dot{p}_{\mu} + p_{\mu} \\ \hline \longrightarrow & q_{\mu} = p_{\mu} - \dot{p}_{\mu} \\ \hline \longrightarrow & m_l^2 \le q^2 \le (m_{AV} - m_Z)^2 \end{array}$

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$$T_{b:\overline{s}}^{AV} \to Z_{b:\overline{s}}^{0} l \overline{v}_{l}$$
 Semileptonic Decay

• The sum rules for the form factors $G_i(q^2)$ can be obtained by analyzing the three-point correlation function

$$\Pi_{\mu\nu}(p,p') = i^2 \int d^4x d^4y e^{i(p'y-px)} \\ \times \langle 0 | \mathcal{T} \{ J_{\mathcal{Z}}(y) J_{\nu}^{\text{tr}}(0) J_{\mu}^{\dagger}(x) \} | 0 \rangle$$

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$$T^{AV}_{b:\overline{s}} o Z^0_{b:\overline{s}} l \overline{v}_l$$
 Semileptonic Decay

$$T_{b:\overline{s}}^{AV} \to Z_{b:\overline{s}}^{0} l \overline{v}_{l}$$
 Semileptonic Decay

The QCD side:

$$\begin{split} \Pi^{\text{OPE}}_{\mu\nu}(p,p') &= \int \mathrm{d}^4x \mathrm{d}^4y \mathrm{e}^{\mathrm{i}(p'y-px)} \Big\{ \mathrm{Tr}\Big[\gamma_5 \widetilde{S}^{ba'}_s(x-y) \times \gamma_5 S^{a'b}_u(x-y) \Big] \Big(\mathrm{Tr}\Big[\gamma_\mu \widetilde{S}^{aa'}_b(y-x) \gamma_5 S^{bi}_c(y) \gamma_\nu(1-\gamma_5) \times S^{ib'}_b(-x) \Big] \\ &+ \mathrm{Tr}\Big[\gamma_\mu \widetilde{S}^{ia'}_b(-x) (1-\gamma_5) \gamma_\nu \widetilde{S}^{bi}_c(y) \gamma_5 \times S^{ab'}_b(y-x) \Big] \Big) - \mathrm{Tr}\Big[\gamma_5 \widetilde{S}^{b'a}_s(x-y) \gamma_5 S^{a'b}_u(x-y) \Big] \\ &\times \Big(\mathrm{Tr}\Big[\gamma_\mu \widetilde{S}^{aa'}_b(y-x) \gamma_5 S^{bi}_c(y) \gamma_\nu(1-\gamma_5) S^{ib'}_b(-x) \Big] + \mathrm{Tr}\Big[\gamma_\mu \widetilde{S}^{ia'}_b(-x) (1-\gamma_5) \gamma_\nu \widetilde{S}^{bi}_c(y) \gamma_5 S^{ab'}_b(y-x) \Big] \Big) \Big\}. \end{split}$$

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$T_{b:\overline{s}}^{AV} \to Z_{b:\overline{s}}^{0} l \overline{v}_{l}$ Semileptonic Decay

$$\Pi_{\mu}^{\text{Phys}}(p,p') = \Pi_{\mu}^{\text{OPE}}(p,p')$$

$$\hat{B}_{M_{1}^{2}}\hat{B}_{M_{2}^{2}}\frac{1}{(p^{2}-m_{1}^{2})^{a}}\frac{1}{(p^{2}-m_{2}^{2})^{b}} \rightarrow (-1)^{a+b}\frac{1}{\Gamma(a)}\frac{1}{\Gamma(b)}e^{-m_{1}^{2}/M_{1}^{2}}e^{-m_{2}^{2}/M_{2}^{2}}\frac{1}{(M_{1}^{2})^{a-1}}\frac{1}{(M_{2}^{2})^{b-1}}$$

$$\widetilde{G}_{i}(\mathbf{M}^{2},\mathbf{s}_{0},\mathbf{q}^{2}) = \frac{1}{f_{\mathrm{AV}}m_{\mathrm{AV}}f_{\mathcal{Z}}m_{\mathcal{Z}}} \int_{\mathcal{M}^{2}}^{s_{0}} \mathrm{d}s e^{(m_{\mathrm{AV}}^{2}-s)/M_{1}^{2}}$$
$$\times \int_{\widetilde{\mathcal{M}}^{2}}^{s_{0}'} \mathrm{d}s' \rho_{i}(s,s') e^{(m_{\mathcal{Z}}^{2}-s')/M_{2}^{2}},$$

 $M^2 = (M_1^2, M_2^2)$ $s_0 = (s_0, \dot{s}_0)$

> Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553 27-30 June 2022 QCD@Work-International Workshop on QCD-Theory and Experiment

$T^{AV}_{b:\overline{s}} o Z^0_{b:\overline{s}} l \overline{v}_l$ Semileptonic Decay

• There are numerous analytical expressions for the fit functions. In the present paper we use

$$G_i(q^2) = G_0^i \exp\left[g_1^i \frac{q^2}{m_{AV}^2} + g_2^i \left(\frac{q^2}{m_{AV}^2}\right)^2\right]$$

$$\implies m_1^2 \leq q^2 \leq (m_{\rm AV} - m_{\mathcal{Z}})^2$$

Fig. (color online) Sum rule results for the form factors $G_0(q^2)$ (red circles) and $G_1(q^2)$ (blue squares). The solid curves are fit functions $\mathcal{G}_0(q^2)$ and $\mathcal{G}_1(q^2)$.

$\mathcal{G}_i(q^2)$	\mathcal{G}_0^i	g_1^i	g_2^i
$\mathcal{G}_0(q^2)$	4.91	19.29	-15.34
$\mathcal{G}_1(q^2)$	2.94	18.73	-20.09
$\mathcal{G}_2(q^2)$	-22.67	20.50	-22.95
$G_3(q^2)$	-21.14	20.77	-23.62

Table 1. Parameters of the extrapolating functions $G_i(q^2)$.

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553 27-30 June 2022 QCD@Work-International Workshop on QCD-Theory and Experiment

$T_{b:\overline{s}}^{AV} \to Z_{b:\overline{s}}^{0} l \overline{v}_{l}$ Semileptonic Decay

• As a result, for the full decay width of the processes $T_{b:\overline{s}}^{AV} \rightarrow Z_{b:\overline{s}}^{0} l \overline{v_l}, l=e, \mu$ and τ we find

$$\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0} e^{-\overline{\nu}_{e}}) = (5.34 \pm 1.43) \times 10^{-8} \text{ MeV},$$

$$\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0} \mu^{-\overline{\nu}_{\mu}}) = (5.32 \pm 1.41) \times 10^{-8} \text{ MeV},$$

$$\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0} \tau^{-\overline{\nu}_{\tau}}) = (2.15 \pm 0.54) \times 10^{-8} \text{ MeV}.$$

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$T_{b:\overline{s}}^{AV} \to Z_{b:\overline{s}}^{0} \rho^{-}(K^{*}(892), D^{*}(2010)^{-}, D_{s}^{*-})$ Nonleptonic Decays

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

• We study the nonleptonic weak decays $T_{b:\bar{s}}^{AV} \rightarrow Z_{b:\bar{s}}^0 \rho^-(K^*(892), D^*(2010)^-, D_s^{*-})$ of the tetraquark $T_{b:\bar{s}}^{AV}$ in the framework of the QCD factorization method.

• At the quark level, the effective Hamiltonian for this decay is given by the expression

$$\mathcal{H}_{n.-lep}^{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{bc} V_{ud}^* [c_1(\mu)Q_1 + c_2(\mu)Q_2]$$

where

$$Q_{1} = \left(\overline{d}_{i}u_{i}\right)_{V-A}\left(\overline{c}_{j}b_{j}\right)_{V-A},$$
$$Q_{2} = \left(\overline{d}_{i}u_{j}\right)_{V-A}\left(\overline{c}_{j}b_{i}\right)_{V-A},$$

i and *j* are the color indices, and $(\overline{q_1}q_2)_{V-A}$ means

$$(\overline{q}_1 q_2)_{\mathbf{V}-\mathbf{A}} = \overline{q}_1 \gamma_\mu (1 - \gamma_5) q_2.$$

The short-distance Wilson coefficients $c_1(\mu)$ and $c_2(\mu)$ are given on the factorization scale μ .

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

In the factorization method, the amplitude of the decay $T_{b:\bar{s}}^{AV} \rightarrow Z_{b:\bar{s}}^0 \rho^-$ has the form

$$\mathcal{A} = \frac{G_F}{\sqrt{2}} V_{bc} V_{ud}^* a(\mu) \langle \rho^-(q) | \left(\overline{d}_i u_i\right)_{V-A} | 0 \rangle$$
$$\times \langle \mathcal{Z}_{b:\overline{s}}^0(p') | \left(\overline{c}_j b_j\right)_{V-A} | T_{b:\overline{s}}^{AV}(p) \rangle,$$

where

$$a(\mu) = c_1(\mu) + \frac{1}{N_c} c_2(\mu),$$

with N_c =3 being the number of quark colors. The only unknown matrix element $<\rho^-(q) I(\overline{d_i}u_i)_{V-A} I0>$ in A can be defined in the following form

$$\begin{aligned} \langle \mathcal{Z}_{b:\overline{s}}^{0}(p')|J_{\mu}^{\text{tr}}|T_{b:\overline{s}}^{\text{AV}}(p)\rangle = &\widetilde{G}_{0}(q^{2})\epsilon_{\mu} + \widetilde{G}_{1}(q^{2})(\epsilon p')P_{\mu} \\ &+ \widetilde{G}_{2}(q^{2})(\epsilon p')q_{\mu} \\ &+ \mathrm{i}\widetilde{G}_{3}(q^{2})\varepsilon_{\mu\nu\alpha\beta}\epsilon^{\nu}p^{\alpha}p'^{\beta} \end{aligned}$$

$$\langle \rho^-(q) | \left(\overline{d}_i u_i \right)_{\mathbf{V} - \mathbf{A}} | 0 \rangle = f_\rho m_\rho \epsilon^*_\mu(q).$$

Then, it is evident that

$$\begin{aligned} \mathcal{A} = & i \frac{G_F}{\sqrt{2}} f_{\rho} V_{bc} V_{ud}^* a(\mu) \Big[\widetilde{G}_0(q^2) \epsilon_{\mu}(p) \epsilon^{*\mu}(q) \\ &+ 2 \widetilde{G}_1(q^2) (p' \epsilon(p)) (p' \epsilon^*(q)) \\ &+ i \widetilde{G}_3(q^2) \epsilon_{\mu\nu\alpha\beta} \epsilon^{*\mu}(q) \epsilon^{\nu}(p) p^{\alpha} p'^{\beta} \Big]. \end{aligned}$$

$T_{h:\overline{s}}^{AV} \to Z_{h:\overline{s}}^{0} \rho^{-}(K^{*}(892), D^{*}(2010)^{-}, D_{s}^{*-})$ **Nonleptonic Decays**

• The width of the nonleptonic decay $T_{h,\bar{s}}^{AV} \to Z_{h,\bar{s}}^0 \rho^-$ can be evaluated using the expression

$$\Gamma = \frac{|\mathcal{A}|^2}{24\pi m_{AV}^2} \lambda (m_{AV}, m_{Z}, m_{\rho}), \qquad \lambda(a, b, c) = \frac{1}{2a} \left[a^4 + b^4 + c^4 - 2\left(a^2b^2 + a^2c^2 + b^2c^2\right) \right]^{1/2}$$
$$|\mathcal{A}|^2 = \sum_{i=0,1,2} H_i \widetilde{G}_j^2 + H_3 \widetilde{G}_0 \widetilde{G}_1, \qquad \lambda(a, b, c) = \frac{1}{2a} \left[a^4 + b^4 + c^4 - 2\left(a^2b^2 + a^2c^2 + b^2c^2\right) \right]^{1/2}$$

where H_i are given by the expressions

$$\begin{split} H_{0} &= \frac{m_{\rho}^{4} + (m_{AV}^{2} - m_{Z}^{2})^{2} + 2m_{\rho}^{2} \left(5m_{AV}^{2} - m_{Z}^{2}\right)}{4m_{\rho}^{2}m_{AV}^{2}}, \\ H_{1} &= \frac{\left[m_{\rho}^{4} + (m_{AV}^{2} - m_{Z}^{2})^{2} - 2m_{\rho}^{2} \left(m_{AV}^{2} + m_{Z}^{2}\right)\right]^{2}}{4m_{\rho}^{2}m_{AV}^{2}}, \\ H_{2} &= \frac{1}{2} \left[m_{\rho}^{4} + (m_{AV}^{2} - m_{Z}^{2})^{2} - 2m_{\rho}^{2} \left(m_{AV}^{2} + m_{Z}^{2}\right)\right], \\ H_{3} &= -\frac{1}{2m_{\rho}^{2}m_{AV}^{2}} \left[m_{\rho}^{6} + (m_{AV}^{2} - m_{Z}^{2})^{3} - m_{\rho}^{4} \left(m_{AV}^{2} + 3m_{Z}^{2}\right) - m_{\rho}^{2} \left(m_{AV}^{4} + 2m_{Z}^{2}m_{AV}^{2} - 3m_{Z}^{2}\right)\right]. \end{split}$$

i=0.1.2

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

$T_{b:\overline{s}}^{AV} \to Z_{b:\overline{s}}^{0} \rho^{-}(K^{*}(892), D^{*}(2010)^{-}, D_{s}^{*-})$ Nonleptonic Decays

$\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0} \rho^{-}) = (3.47 \pm 0.92) \times 10^{-10} \text{ MeV}$
$\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathbb{Z}_{b:\overline{s}}^{0} K^{*}(892)) = (1.47 \pm 0.37) \times 10^{-11} \text{ MeV},$
$\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0} D^{*}(2010)^{-}) = (1.54 \pm 0.39) \times 10^{-11} \text{ MeV}$
$\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0} D_{s}^{*-}) = (4.97 \pm 1.32) \times 10^{-10} \text{ MeV}$

Quantity	Value
$m_{ ho}$	(775.26 ± 0.25) MeV
$m_{K^{\star}}$	(891.66 ± 0.26) MeV
$m_{D^{\star}}$	(2010.26 ± 0.05) MeV
$m_{D_s^{\star}}$	(2112.2 ± 0.4) MeV
$f_ ho$	$(210 \pm 4) \text{ MeV}$
$f_{K^{\star}}$	$(204 \pm 7) \text{ MeV}$
$f_{D^{\star}}$	(223.5 ± 8.4) MeV
$f_{D_s^{\star}}$	$(268.8 \pm 6.6) \text{ MeV}$
$ V_{ud} $	0.97420 ± 0.00021
$ V_{us} $	0.2243 ± 0.0005
$ V_{cd} $	0.218 ± 0.004
$ V_{cs} $	0.997 ± 0.017

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

The full width Γ_{full} and the mean lifetime τ

$$\begin{split} &\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0}e^{-\overline{\nu}_{e}}) = (5.34 \pm 1.43) \times 10^{-8} \text{ MeV}, \\ &\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0}\mu^{-\overline{\nu}_{\mu}}) = (5.32 \pm 1.41) \times 10^{-8} \text{ MeV}, \\ &\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0}\tau^{-\overline{\nu}_{\tau}}) = (2.15 \pm 0.54) \times 10^{-8} \text{ MeV}, \\ &\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0}\rho^{-}) = (3.47 \pm 0.92) \times 10^{-10} \text{ MeV}, \\ &\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0}K^{*}(892)) = (1.47 \pm 0.37) \times 10^{-11} \text{ MeV}, \\ &\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0}D^{*}(2010)^{-}) = (1.54 \pm 0.39) \times 10^{-11} \text{ MeV}, \\ &\Gamma(T_{b:\overline{s}}^{\text{AV}} \to \mathcal{Z}_{b:\overline{s}}^{0}D_{s}^{*-}) = (4.97 \pm 1.32) \times 10^{-10} \text{ MeV} \end{split}$$

Chinese Phys. C, 2021, 45, 013105, arXiv:2002.04553

Concluding Remarks

 Numerical values of the spectroscopic parameters obtained for the scalar and axial-vector tetraquarks composed of the heavy bb or bc diquarks and light antidiquarks

Tetraquark (J ^P)	Mass (MeV)	Coupling Constant (GeV ⁴)
$T^{-}_{bb;\overline{us}}(0^{+})$	10250 ± 270	$(2,69\pm0,58)\times10^{-2}$
$Z^0_{bc;\overline{us}}(0^+)$	6830±160	(7,1±1,8)×10 ⁻³
$T^{bb;\overline{u}\overline{d}}(0^+)$	10135 ± 240	$(2,26\pm0,57)\times10^{-2}$
$\tilde{Z}^0_{bc;\overline{u}\overline{d}}(0^+)$	6730±150	$(6, 2\pm 1, 4) \times 10^{-3}$
$T^{bb;\overline{ud}}(1^+)$	10035 ± 260	$(1,38\pm0,27)\times10^{-2}$
$Z^0_{bc;\overline{ud}}(0^+)$	6660±150	(0,51±0,16)×10 ⁻²
$T^{-}_{bb;\overline{us}}(1^+)$	10215 ± 250	$(2,26\pm0,57)\times10^{-2}$
$Z^0_{bc;\overline{us}}(0^+)$	6770±150	$(6,3\pm1,3)\times10^{-3}$
$T^0_{bc;\overline{u}\overline{d}}(1^+)$	7050±125	$(8,3\pm1,3)\times10^{-3}$

Concluding Remarks

 Numerical values of decay width of the semileptonic and nonleptonic decays for the scalar and axialvector tetraquarks

٦	Channels	Decay Width (Γ)
	$T^{b:\overline{s}} \to Z^0_{bc} e^- \overline{\nu}_e$	$(6,16\pm1,74)\times10^{-10}$ MeV
	$T^{\rm b:\overline{s}}\to Z^0_{\rm bc}\mu^-\overline{\nu}_\mu$	$(6,15\pm1,74)\times10^{-10}$ MeV
	$T^{b:\overline{s}} \to Z^0_{bc} \tau^- \overline{\nu}_{\tau}$	$(2,85\pm0,81)\times10^{-10}$ MeV
	$T^{b:\overline{s}} ightarrow Z^0_{bc} \pi^-$	$(6,67\pm1,99)\times10^{-13}$ MeV
	$T^{b:\overline{s}} \rightarrow Z^0_{bc} K^-$	$(5,33\pm1,47)\times10^{-14}$ MeV
	$T^{b:\overline{s}} \to Z^0_{bc} D^-$	$(1,13\pm0,31)\times10^{-13}$ MeV
Scalar → Scalar	$T^{b:\overline{s}} \rightarrow Z^0_{bc} D^s$	$(3,88\pm1,01)\times10^{-12}$ MeV
	$T_{b:\overline{d}}^{-} \rightarrow \tilde{Z}_{bc}^{0} e^{-\overline{v}_{e}}$	$(4,45\pm1,28)\times10^{-10}$ MeV
	$T^{b:\overline{d}} \rightarrow \tilde{Z}^0_{bc} \mu^- \overline{\nu}_{\mu}$	$(4,44\pm1,26)\times10^{-10}$ MeV
	$T^{b:\overline{d}} o \tilde{Z}^0_{bc} \tau^- \overline{\nu}_{\tau}$	$(1,99\pm0,56)\times10^{-10}$ MeV
	$T^{b:\overline{d}} ightarrow ilde{Z}^0_{bc} \pi^-$	$(5,13\pm1,42)\times10^{-13}$ MeV
	$T^{b:\overline{d}} ightarrow { ilde{Z}}^0_{bc} K^-$	$(3,93\pm1,12)\times10^{-14}$ MeV
	$T^{b:\overline{d}} ightarrow \widetilde{Z}^0_{bc} D^-$	$(8,49\pm2,41)\times10^{-14}$ MeV
	$T^{b:\overline{d}} ightarrow ilde{Z}^0_{bc} D^s$	$(2,92\pm0,82)\times10^{-12}$ MeV
5	$T^{AV}_{b:\overline{d}} \to Z^0_{bc} e^- \overline{\nu}_e$	$(2,65\pm0,78)\times10^{-8}$ MeV
	$T^{\rm AV}_{b:d} \to Z^0_{bc} \mu^- \overline{\nu}_{\mu}$	$(2,64\pm0,78)\times10^{-8}$ MeV
	$T^{AV}_{b:\overline{d}} \to Z^0_{bc} \tau^- \overline{\nu}_\tau$	$(1,88\pm0,55)\times10^{-8}$ MeV
	$T^{AV}_{b:\overline{s}} ightarrow Z^0_{bc} e^- \overline{\nu}_e$	$(5,34\pm1,43)\times10^{-8}$ MeV
$\Lambda \setminus \Sigma$ Sector	$T^{\rm AV}_{{\rm b}:\overline{\rm s}}\to Z^{\rm 0}_{\rm bc}\mu^-\overline{\nu}_{\mu}$	$(5,32\pm1,41)\times10^{-8}$ MeV
$AV \rightarrow Scalar$	$T^{AV}_{b:\overline{s}} \rightarrow Z^0_{bc} \tau^- \overline{\nu}_{\tau}$	$(2,15\pm0,54)\times10^{-8}$ MeV
	$T^{AV}_{b:\overline{s}} \to Z^0_{bc} \rho^-$	$(3,47\pm0,92)\times10^{-10}$ MeV
	$T_{b:\overline{s}}^{AV} \rightarrow Z_{bc}^{0} K^{*}(892)$	$(1,47\pm0,37)\times10^{-11}$ MeV
	$T_{b:\overline{s}}^{AV} \rightarrow Z_{bc}^0 D^* (2010)^-$	$(1,54\pm0,39)\times10^{-11}$ MeV
	$T^{AV}_{b:\overline{s}} \rightarrow Z^0_{bc} D^{*-}_s$	$(4,97\pm1,32)\times10^{-10}$ MeV
\leq	$T_{b:\overline{d}}^{AV} \rightarrow \tilde{T}_{bc}^{AV} e^{-\overline{v}_{e}}$	$(2,02\pm0,39)\times10^{-9}$ MeV
	$T^{AV}_{b:\overline{d}} \rightarrow \tilde{T}^{AV}_{bc} \mu^- \overline{\nu}_{\mu}$	$(1,96\pm0,37)\times10^{-9}$ MeV
	$T^{AV}_{b:\overline{d}} \rightarrow \tilde{T}^{AV}_{bc} \tau^- \overline{\nu}_{\tau}$	$(1,03\pm0,19)\times10^{-10}$ MeV
	$T^{AV}_{b:\overline{d}} ightarrow \widetilde{T}^{AV}_{bc} \pi^-$	$(5,84\pm1,11)\times10^{-10}$ MeV
$AV \rightarrow AV$	$T^{AV}_{b:\overline{d}} ightarrow \widetilde{T}^{AV}_{bc} K^-$	$(6,43\pm1,32)\times10^{-11}$ MeV
	$T^{AV}_{b:\overline{d}} ightarrow \widetilde{T}^{AV}_{bc} D^-$	$(3,01\pm0,64)\times10^{-11}$ MeV
	$T_{b:\overline{d}}^{AV} ightarrow \widetilde{T}_{bc}^{AV} D_s^-$	$(7,80\pm1,54)\times10^{-10}$ MeV

Concluding Remarks

- These studies are very important in terms of contributing to the theoretical literature as well as shedding light on future experiments.
- In addition, the experimental results obtained recently for the weak decay channels of hadrons and the standard model predictions do not overlap, and there are predictions that this inconsistency may have a new physics effect.
- Therefore, our results for the weak decays of exotic hadrons will also guide the search for new physics.
- In addition, studies include information about the perturbative and non-perturbative aspects of QCD, which is one of the four-basic interactions of the universe.
- Therefore, when the obtained results are combined with the experimental predictions, it will also help to increase our knowledge about the universe.

References

- S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, 'Weak decays of the axial-vector tetraquark T⁻_{bb:ūd}', Phys. Rev. D 99, 033002(2019), arXiv: 1819.07791.
- S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, 'Heavy exotic scalar meson $T_{bb;\overline{us}}^-$ ', Phys. Rev. D **101**, 094026 (2020), arXiv: 1912.07656.
- S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, 'Stable scalar tetraquark $T_{bb;\overline{ud}}$ ', Eur. Phys. J. A **56**, 177 (2020), arXiv: 2001.01446.
- S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, 'A family of double-beauty tetraquarks: Axial-vector $T_{bb:\overline{us}}^-$ ', Chinese Phys. C **45**, 1 (2021), arXiv: 2002.04553.
- S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, 'Semileptonic and nonleptonic decays of the axial-vector tetraquark $T_{ph:\overline{u}\overline{d}}^{-}$ ', Eur. Phys. J. A(2021) arXiv: 2008.02049.
- M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999).
- M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, Nucl. Phys. B591, 313 (2000).

In collaboration with S.S. Agaev, K. Azizi, H. Sundu

"The most incomprehensible thing about the Universe is that it is comprehensible."

ALBERT EINSTEIN

Thank you

bbarsbay@dogus.edu.tr