
(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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