
energy of 1.96 TeV. The (anti)quark momen-
tum distributions in the (anti)proton are the
best-measured among all constituent partons
of the colliding particles. The use of proton-
antiproton collisions reduces uncertainties
on themomenta of the partons and the corre-
spondingMW uncertainty relative to the LHC,
where W bosons are produced from quarks
or antiquarks and gluons, the latter of which
have less precisely known momentum distri-
butions. The moderate collision energy at the
Tevatron further restricts the parton momenta
to a range in which their distributions are
known more precisely, compared with the rel-
evant range at the LHC. The LHC detectors
partially compensate with larger lepton rapidity
coverage. The improved lepton resolution at the
LHC detectors has a minor impact on theMW

uncertainty. Although the LHC dataset is much
larger, the lower instantaneous luminosity at
the Tevatron and in dedicated low-luminosity
LHC runs helps to improve the resolution on
certain kinematic quantities, compared with
the typical LHC runs.
The data sample corresponds to an inte-

grated luminosity of 8.8 inverse femtobarns
(fb−1) of p!p collisions collected by the CDF II
detector (43) between 2002 and 2011 and
supersedes the earlier result obtained from a
quarter of these data (41, 43). In this cylindri-
cal detector [figure 3 of (43)], trajectories of
charged particles (tracks) produced in the
collisions are measured by means of a wire
drift chamber (a central outer tracking drift
chamber, or COT) (48) immersed in a 1.4-T
axial magnetic field. Energy and position mea-
surements of particles are also provided by EM
and hadronic calorimeters surrounding the
COT. The calorimeter elements have a projec-
tive tower geometry, with each tower pointing
back to the average beam collision point at
the center of the detector. Additional drift
chambers (49) surrounding the calorimeters
identify muon candidates as penetrating par-
ticles. Themomentum perpendicular
to the beam axis (cylindrical z axis) is
denoted as pT (if measured in the COT)
or ET (if measured in the calorimeters).
The measurement uses high-purity
samples of electron andmuon (together
referred to as lepton) decays of the W±

bosons, W→ en and W→ mn, respec-
tively (e, electron; n, neutrino; m,muon).

W and Z boson event selection

Events with a candidate muon with
pT > 18GeVor electronwithET> 18GeV
(50) are selected online by the trigger
system for offline analysis. The follow-
ing offline criteria select fairly pure sam-
ples of W → mn and W → en decays.
Muon candidates must have pT >
30 GeV, with requirements on COT-
track quality, calorimeter-energy depo-

sition, andmuon-chamber signals. Cosmic-ray
muons are rejected with a targeted track-
ing algorithm (51). Electron candidates must
have a COT track with pT > 18 GeV and an EM
calorimeter-energy depositionwithET >30GeV
and must meet requirements for COT track
quality, matching of position and energy
measured in the COT and in the calorimeter
(ET/pT < 1.6), and spatial distributions of en-
ergy depositions in the calorimeters (43).
Leptons are required to be central in pseu-
dorapidity ( hj j < 1) (50) andwithin the fiducial
region where the relevant detector systems have
high efficiency and uniform response. When
selecting the W boson candidate sample, we
suppress the Z boson background by rejecting
events with a second lepton of the same flavor.
Events that contain two oppositely charged
leptons of the same flavor with invariant mass
in the range of 66 to 116 GeV andwith dilepton
pT < 30 GeV provide Z boson control samples
(Z → ee and Z → mm) to measure the detector
response, resolution, and efficiency, as well as
the boson pT distributions. Details of the event
selection criteria are described in (43).
The W boson mass is inferred from the

kinematic distributions of the decay leptons
(‘). Because the neutrino from the W boson
decay is not directly detectable, its transverse
momentum pn

T is deduced by imposing trans-
verse momentum conservation. Longitudinal
momentumbalance cannot be imposedbecause
most of the beammomenta are carried away by
collision products that remain close to the beam
axis, outside the instrumented regions of the
detector. By design of the detector, such prod-
ucts have small transverse momentum. The
transverse momentum vector sum of all detect-
able collision products accompanying the W
or Z boson is defined as the hadronic recoil
u
→ ¼ SiEisin qið Þn̂i, where the sum is performed
over calorimeter towers (52) with energy Ei,
polar angle qi, and transverse directions speci-
fied by unit vectors n̂i . Calorimeter towers

containing energy deposition from the charged
lepton(s) are excluded from this sum. The
transverse momentum vector of the neu-

trino p
→n
T is inferred as p

→n
T≡$ p

→‘

T $ u
→
from p

→
T

conservation, where p
→‘

T is the vector pT (ET) of

the muon (electron). In analogy with a two-
body mass, the W boson transverse mass is
defined using only the transverse momentum

vectors as mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p‘

Tp
n
T $ p

→‘

T % p
→n
T

" #r
(53).

High-purity samples of W bosons are ob-
tained with the requirements 30 < p‘T < 55 GeV,
30< pn

T < 55 GeV, u
→$$ $$< 15 GeV,and 60 <mT <

100 GeV. This selection retains samples con-
taining preciseMW information and low back-
grounds. The final samples ofW and Z bosons
consist of 1,811,700 (66,180)W → en ( Z → ee)
candidates and 2,424,486 (238,534)W → mn
(Z → mm) candidates.

Simulation of physical processes

The data distributions of mT, p‘
T, and pnT are

compared with corresponding simulated line
shapes (“templates”) as functions of MW from
a customMonte Carlo simulation that has been
designed andwritten for this analysis. A binned
likelihood ismaximized to obtain themass and
its statistical uncertainty. Thekinematic proper-
ties ofW and Z boson production and decay are
simulated using the RESBOS program (54–56),
which calculates the differential cross section
with respect to bosonmass, transversemomen-
tum, and rapidity for boson production and
decay. The calculation is performed at next-
to-leading order in perturbative quantum
chromodynamics (QCD), along with next-to-
next-to-leading logarithm resummation of
higher-order radiative quantum amplitudes.
RESBOS offers one of themost accurate theoretical
calculations available for these processes. The
nonperturbative model parameters in RESBOS

and the QCD interaction coupling strengthas
are external inputs needed to complete the de-

scription of the boson pT spectrum and
are constrained fromthehigh-resolution
dilepton p‘‘

T spectrum of the Z boson
data and the pW

T data spectrum. EM
radiation from the leptons is modeled
with the PHOTOS program (57), which is
calibrated to the more accurate HORACE

program (58, 59). We use the NNPDF3.1
(60) partondistribution functions (PDFs)
of the (anti)proton, as they incorporate
the most complete relevant datasets of
the available next-to-next-to-leading
order (NNLO) PDFs. Using 25 symmet-
ric eigenvectors of the NNPDF3.1 set, we
estimate a PDF uncertainty of 3.9 MeV.
We find that the CT18 (61), MMHT2014
(62), and NNPDF3.1 NNLO PDF sets pro-
duce consistent results for theW boson
mass, within ±2.1 MeV of themidpoint
of the interval spanning the range of
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Table 1. Individual fit results and uncertainties for the MW

measurements. The fit ranges are 65 to 90 GeV for the mT fit
and 32 to 48 GeV for the p‘T and pnT fits. The c2 of the fit is
computed from the expected statistical uncertainties on the
data points. The bottom row shows the combination of the six
fit results by means of the best linear unbiased estimator (66).

Distribution W boson mass (MeV) c2/dof

mT e; nð Þ 80;429:1 T 10:3stat T 8:5syst 39/48
.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... . . ... ..

p‘T eð Þ 80;411:4 T 10:7stat T 11:8syst 83/62
.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... . . ... ..

pnT eð Þ 80;426:3 T 14:5stat T 11:7syst 69/62
.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... . . ... ..

mT m; nð Þ 80;446:1 T 9:2stat T 7:3syst 50/48
.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... . . ... ..

p‘T mð Þ 80;428:2 T 9:6stat T 10:3syst 82/62
.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... . . ... ..

pnT mð Þ 80;428:9 T 13:1stat T 10:9syst 63/62
.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... . . ... ..

Combination 80;433:5 T 6:4stat T 6:9syst 7.4/5
.. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... . . ... ..
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