
THE HIGGS MECHANISM
A charged scalar field can be represented by a value with dimensions of mass, and a phase

Gauge symmetry: physical results do not depend on phase

Consider a potential with a minimum at a non-zero value of the scalar field
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There are two types of oscillations, one along the radial direction and the other along the
azimuthal direction. Since there is no quadratic term for the field in the azimuthal direction,
the corresponding particle is massless. This massless particle arising from an invariance of
the Lagrangian with respect to the ground state is known as a Goldstone boson.

4.2 Gauged scalar field

Perhaps the most interesting phenomena occur when a scalar field possesses a gauge
group charge and has a non-zero vacuum expectation value. This value specifies a di-
rection, or phase, in group space, and gives non-zero masses to the corresponding gauge
bosons. To explore the possibilities, we consider charged scalar fields under an abelian
U(1) gauge group and a non-abelian SU(2) gauge group.

4.2.1 U(1)-charged scalar field

The simplest gauge group is U(1), which can be represented by a phase or a location
on a circle. A single gauge boson, or connection, Aµ, describes the parallel transport of
the momentum vector of a field with a U(1) fiber degree of freedom and charge �e:

D� = (@µ + ieAµ)�dx
µ
. (4.6)

There are no group indices, since it is a one-dimensional space. The scalar field has no
direction in spacetime, but it has a position in group space; it is a vector in the group space
with location determined by its phase.

The Lagrangian is simply the interacting scalar-field Lagrangian with derivatives given
by equation 4.6, plus a curvature term �Fµ⌫F
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The minimum of V (�) has not changed, so again we expand around the ground state of
the vacuum and obtain the terms in equation 4.5 [L�(�, ✏)] plus terms with Aµ from the
covariant derivative:
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There are a number of remarkable phenomena in this Lagrangian. First, consider the term
e
2
µ
2

2� AµA
µ
= e

2
h�0i

2
AµA

µ. The non-zero expectation value h�0i is at a particular loca-
tion in group space, i.e. it has a specific phase. The e
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µ term transports fields
with group positions along this specific phase, over a characteristic distance |h�0i|

�1. One
can imagine a source with a particular U(1) phase is parallel-transported via Aµ. Since Aµ

has a potential well in the direction h�0i, the phase “falls” in this direction over a space-
time distance |h�0i|

�1. Oscillations in the phase are thus damped out over distances of this
scale.

The field has a non-zero value throughout space:
the vacuum expectation value 

(246 GeV for the Higgs field)

Oscillations in the magnitude cost energy 
Correspond to the massive Higgs boson

Oscillations in the phase do not cost energy

Coupling between Higgs and gauge (and fermion) fields causes potential wells in these fields 
Oscillations cost energy → non-zero masses
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