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W boson mass @ the Tevatron
Measurement strategy: 

Measure momenta of charged lepton and neutrino in transverse plane 
Construct the transverse mass in this plane and fit three distributions for mW 

Experimental and theoretical requirements: 
Precise calibration of lepton momentum 
Accurate calibration of detector response to initial-state radiation and underlying event 
Accurate model of longitudinal and transverse momentum of the W boson 

Tevatron instantaneous luminosities produce <10 overlapping collisions on average 
A large majority of W bosons are produced by valence quarks

normalizations in the MW template fits. The uncertainties
on the background estimates result in uncertainties of 4, 3,
and 4 MeV on MW from the mT , pe

T , and pν
T fits,

respectively (Table VIII).

XI. W-BOSON-MASS FITS

The W-boston mass is extracted by performing fits to a
sum of background and simulated signal templates of the
mT , pl

T , and pν
T distributions. The fits minimize − lnL,

where the likelihood L is given by

L ¼
YN

i¼1

e−mimni
i

ni!
; (36)

where the product is over N bins in the fit region with ni
entries (from data) and mi expected entries (from the
template) in the ith bin. The template is normalized to
the data in the fit region. The likelihood is a function of
MW , where MW is defined by the relativistic Breit-Wigner
mass distribution,

dσ
dm

∝
m2

ðm2 −M2
WÞ2 þm4Γ2

W=M
2
W
; (37)

wherem is the invariant mass of the propagator. We assume
the standard model W boson width ΓW ¼ 2094% 2 MeV.
The uncertainty on MW resulting from δΓW ¼ 2 MeV is
negligible.

A. Fit results

The mT fit is performed in the range 65<mT <90GeV.
Figure 36 shows the results of the mT fit for the W → μν
and W → eν channels while a summary of the 68%
confidence uncertainty associated with the fit is shown
in Table IX. The pl

T and pν
T fits are performed in the ranges

32 < pl
T < 48 and 32 < pν

T < 48 GeV, respectively, and
are shown in Figs. 37 and 38, respectively. The uncertain-
ties for the pl

T and pν
T fits are shown in Tables X and XI,

respectively. The differences between data and simulation
for the three fits, divided by the statistical uncertainties on
the predictions, are shown in Figs. 39–41 and the fit results
are summarized in Table XII.

We utilize the best linear unbiased estimator (BLUE)
[61] algorithm to combine individual fits. Each source of
systematic uncertainty is assumed to be independent from
all other sources of uncertainty within a given fit. We

TABLE VIII. Background fractions from various sources in the
W → eν data set, and the corresponding uncertainties on the mT ,
pμ
T , and pν

T fits for MW.

Fraction of δMW (MeV)
Source W → eν data (%) mT fit pe

T fit pν
T fit

Z=γ& → ee 0.139% 0.014 1.0 2.0 0.5
W → τν 0.93% 0.01 0.6 0.6 0.6
Hadronic jets 0.39% 0.14 3.9 1.9 4.3
Total 1.46% 0.14 4.0 2.8 4.4
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FIG. 36. Distributions ofmT forW boson decays to μν (top) and
eν (bottom) final states in simulated (histogram) and experimental
(points) data. The simulation corresponds to the maximum-
likelihood value of MW and includes backgrounds (shaded).
The likelihood is computed using events between the two arrows.

TABLE IX. Uncertainties on MW (in MeV) as resulting from
transverse-mass fits in the W → μν and W → eν samples. The
last column reports the portion of the uncertainty that is common
in the μν and eν results.

mT fit uncertainties
Source W → μν W → eν Common

Lepton energy scale 7 10 5
Lepton energy resolution 1 4 0
Lepton efficiency 0 0 0
Lepton tower removal 2 3 2
Recoil scale 5 5 5
Recoil resolution 7 7 7
Backgrounds 3 4 0
PDFs 10 10 10
W boson pT 3 3 3
Photon radiation 4 4 4
Statistical 16 19 0
Total 23 26 15
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radiation, that results in measurable hadronic-recoil energy.
The W-boson mass is measured using low-background
samples of W ! ‘!‘ decays (‘ ¼ e, " at CDF and ‘ ¼
e at D0) that are reconstructed using the CDF [22] and D0
[23] detectors. The mass is determined using three kine-
matic variables measured in the plane perpendicular to the
beam direction: the transverse momentum of the charged
lepton (p‘

T), the transverse momentum of the neutrino (p!
T),

and the transverse mass m‘
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p‘

Tp
!
Tð1# cos!#Þ

q
,

where !# is the opening angle between the lepton and
neutrino momenta in the plane transverse to the beam. The
magnitude and direction of p!

T is inferred from the vector
of the missing transverse energy 6E‘

T [24]. The W-boson
mass is extracted from maximum-likelihood fits to the
binned distributions of the observed p‘

T , 6E‘
T , andm

‘
T values

using a parametrized simulation of these distributions as a
function of MW . These simulations depend on the kine-
matic distributions of theW-boson decay products and also
on detector effects that are constrained using theoretical
calculations and control samples. The kinematic distribu-
tions are determined by several effects including the
W-boson transverse momentum pTðWÞ and the parton
distribution functions (PDFs) of the interacting protons
and antiprotons. Major detector effects include energy
response to leptons, hadronic recoil, the response to QED
radiation, and multiple-interaction pileup, together with
calorimeter acceptance effects and lepton-identification
efficiencies. The detailed simulations developed at CDF
and D0 enable the study of these effects to better than 1 part
in 104 precision on the observed value of MW .

In the CDF (2012) and D0 (2012) measurements, the
kinematic properties ofW-boson production and decay are
simulated using RESBOS [25], which is a next-to-leading
order generator that includes next-to-next-to-leading loga-
rithm resummation of soft gluons at low boson pT [26].
The momenta of interacting partons in RESBOS are calcu-
lated as fractions of the colliding (anti)proton momenta
using the CTEQ6.6 [27] PDFs. The radiation of photons
from final-state leptons is simulated using PHOTOS [28].

III. CDF (2012) AND D0 (2012) MEASUREMENTS

A. CDF measurement

The CDF (2012) measurement uses data corresponding
to an integrated luminosity of 2:2 fb#1, collected between
2002 and 2007. Both the muon (W ! "!") and electron
(W ! e!e) channels are considered. Decays of J=c and"
mesons into muon pairs are reconstructed in a central
tracking system to establish the absolute momentum scale.
A measurement of the Z-boson mass (MZ) in Z ! ""
decays is performed as a consistency check. This measure-
ment, which uses the tracking detector, yields MZ¼
91180%12ðstatÞ%10ðsystÞMeV, consistent with the world
average mass of 91188% 2 MeV [29], and is therefore
also used as an additional constraint on the momentum
scale. The electromagnetic calorimeter energy scale and

nonlinearity are determined by fitting the peak of the E=p
distribution of electrons fromW ! e! and Z ! ee decays,
where E is the energy measured in the calorimeter and p is
the momentum of the associated charged particle. The
lower tail of the E=p distribution is used to determine the
amount of material in the tracking detector. The Z-boson
mass measured in Z ! ee decays is used as a consistency
check and to constrain the energy scale. The value ofMZ ¼
91230% 30ðstatÞ % 14ðsystÞ MeV from the calorimetric
measurement is also consistent with the world average.
The CDF (2012) measurement of MW is obtained from

the combination of six observables: p"
T , 6E"

T , m
"
T , p

e
T , 6Ee

T

andme
T . The combined result isMW ¼ 80387% 12ðstatÞ %

15ðsystÞ MeV. Table I summarizes the sources of
uncertainty in the CDF measurement.

B. D0 measurement

The D0 (2012) measurement uses data corresponding to
4:3 fb#1 of integrated luminosity recorded between 2006
and 2009. D0 calibrates the calorimeter energy scale using
Z ! ee decays. Corrections for energy lost in uninstru-
mented regions are based on a comparison between the
shower-development profiles from data and from a detailed
GEANT-based simulation [30] of the D0 detector. The world
average value forMZ [29] is used to determine the absolute
energy scale of the calorimeter, which is thereafter used to
correct the measurement of the electron energy from the
W-boson decay. This MW measurement is therefore
equivalent to a measurement of the ratio of W- and
Z-boson masses. This calibration method eliminates
many systematic uncertainties common to the W- and
Z-boson mass measurements, but its precision is limited
by the size of the available Z-boson data set.
The results obtained with the two most sensitive

observables me
T and pe

T are combined to determine the
W-boson mass of MW¼80367%13ðstatÞ%22ðsystÞMeV.
A summary of the uncertainties is presented in Table II.

TABLE I. Uncertainties of the CDF (2012) MW measurement
determined from the combination of the six measurements.

Source Uncertainty (MeV)

Lepton energy scale and resolution 7
Recoil energy scale and resolution 6
Lepton removal from recoil 2
Backgrounds 3
Experimental subtotal 10
Parton distribution functions 10
QED radiation 4
pTðWÞ model 5
Production subtotal 12
Total systematic uncertainty 15
W-boson event yield 12
Total uncertainty 19
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This D0 (2012) measurement is combined with a previous
D0 measurement [16] corresponding to an integrated
luminosity of 1:0 fb!1, which uses data recorded between
2002 and 2006, to yield MW ¼ 80375# 11ðstatÞ #
20ðsystÞ MeV.

IV. COMBINATION WITH PREVIOUS
TEVATRON MEASUREMENTS

The CDF measurements from Ref. [8] (1988–1989) and
Ref. [9] (1992–1993) were made using superseded PDF
sets and have been corrected [19] using recent PDF sets.
The previous results are also adjusted to use the same
combination technique (the BLUE method) as in later

combinations. The templates for fitting MW assume
the Breit-Wigner running-width scheme propagator,
1=ðŝ!M2

W þ iŝ!W=MWÞ, which makes the value of MW

determined by the fit dependent on !W . Here, ŝ is the
square of the center-of-mass energy in the parton reference
frame and !W is the total width of the W boson. Different
measurements have used different values of !W , yielding a
shift in measured values of the W-boson mass [19],
"MW ¼ !ð0:15# 0:05Þ"!W , where "!W is the differ-
ence between the value of !W predicted by the SM, !W ¼
2092:2# 1:5 MeV [31], and that used in a particular
analysis. The prediction of !W assumes MW ¼ 80385#
15 MeV, which is a preliminary world-average combina-
tion result [32] of this article. The impact of the corrections
on the final MW combination reported in this article is
found to be less than 0.2 MeV. Table III summarizes all
inputs to the combination and the corrections made to
ensure consistency across measurements.

V. CORRELATIONS IN THE CDF AND
D0 MW MEASUREMENTS

The increased statistical power of CDF (2012) and D0
(2012) MW measurements necessitates a more detailed
treatment of the systematic uncertainties due to the
W-boson production and decay model that are independent
of the data-sample size. We assume that for each uncer-
tainty category, the smallest uncertainty across measure-
ments is fully correlated while excesses above that level are
generally assumed to be due to uncorrelated differences
between measurements. One exception corresponds to the
two D0 measurements that use very similar models and are
treated as fully correlated [16,18].
The experimental systematic uncertainties of the D0

measurement are dominated by the uncertainty in the

TABLE III. The input data used in the MW combination. All entries are in units of MeV.

CDF [8] CDF [9] CDF [10] D0 [12–15] D0 [16] CDF [17] D0 [18]

(1988–1989) (1992–1993) (1994–1995) (1992–1995) (2002–2006) (2002–2007) (2006–2009)

4:4 pb!1 18:2 pb!1 84 pb!1 95 pb!1 1:0 fb!1 2:2 fb!1 4:3 fb!1

Mass and width
MW 79 910 80 410 80 470 80 483 80 400 80 387 80 367
!W 2 100 2 064 2 096 2 062 2 099 2 094 2 100
MW uncertainties
PDF 60 50 15 8 10 10 11
Radiative corrections 10 20 5 12 7 4 7
!W 0.5 1.4 0.3 1.5 0.4 0.2 0.5
Total 390 181 89 84 43 19 26
MW corrections
"!W þ1:2 !4:2 þ0:6 !4:5 þ1:1 þ0:3 þ1:2
PDF þ20 !25 0 0 0 0 0
Fit method !3:5 !3:5 !0:1 0 0 0 0
Total þ17:7 !32:7 þ0:5 !4:5 þ1:1 þ0:3 þ1:2
MW corrected 79 927.7 80 377.3 80 470.5 80 478.5 80 401.8 80 387.3 80 368.6

TABLE II. Uncertainties of the D0 (2012) MW measurement
determined from the combination of the two most sensitive
observables me

T and pe
T .

Source Uncertainty (MeV)

Electron energy calibration 16
Electron resolution model 2
Electron shower modeling 4
Electron energy loss model 4
Recoil energy scale and resolution 5
Electron efficiencies 2
Backgrounds 2
Experimental subtotal 18
Parton distribution functions 11
QED radiation 7
pTðWÞ model 2
Production subtotal 13
Total systematic uncertainty 22
W-boson event yield 13
Total uncertainty 26
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