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FIG. 13: (Left) Measured calorimeter energy scale in bins of electron tower in W → eν data after corrections are
applied, with the line SE = 1 overlaid. The towers are numbered in order of increasing |η| and each tower subtends
∆η ≈ 0.11. (Right) Distribution of E/p for Z → ee data (circles) after the full energy-scale calibration; the best-fit
template (histogram) is overlaid. The fit region is enclosed by arrows.

VII. ELECTRON MOMENTUM MEASUREMENT

An electron radiates bremsstrahlung photons as it traverses the approximately 19% of a radiation length in the
tracking volume [12], which degrades its track momentum resolution. Most of these photons are coalesced with the
electron shower in the calorimeter, therefore we use the higher-resolution calorimeter energy measurement for the
MW and MZ fits. The calibration of the track momentum p is transferred to the calorimeter energy E by fitting the
distribution of their ratio, E/p. The mean of the ratio is used to improve the spatial and temporal uniformity of
the calorimeter response, by applying corrections as functions of electron position and experiment running time. The
distribution of the ratio is also used to determine the amount of radiative material upstream and in the calorimeter.
The calorimeter calibration is verified by measuring the mass of the Z boson in Z → ee events. After this validation,
the MZ measurement is used as an additional calibration source for the MW measurement.

A. E/p calibration

Following event reconstruction [31], the mean E/p in the range 0.9–1.1 is used to correct 1–2% response variations
in electron-energy measurement in the data. These variations are mapped as functions of distance from tower edges
in φ and z and corrected following Refs. [12, 19]. The spatial uniformity calibration has improved because of the
increased sample size of the data. Furthermore, a temporal uniformity calibration of the EM calorimeter is introduced
in this analysis; assuming azimuthal symmetry, the calorimeter response in each longitudinal tower is studied as
functions of experiment operational time, and the time-dependence is corrected for. Next, the likelihood fits for the
calorimeter energy scale are performed separately in the eight longitudinal towers. Applying these corrections to the
data eliminates the dependence on electron |η| (Fig. 13).

The amount of radiative material is simulated using a fine-grained three-dimensional lookup table, as described
in Sec. III. The tail of the E/p distribution (E/p > 1.12), which is sensitive to the total number of radiation
lengths traversed, is used to tune the latter in the simulation by performing a maximum likelihood fit. We obtain a
multiplicative factor SW

mat = 1.0493± 0.0016stat ± 0.0012QCD (SZ
mat = 1.0428± 0.0060stat) to the number of radiation

lengths in the simulation, where the QCD systematic uncertainty refers to background contamination due to QCD
jets. The results from W and Z data are statistically consistent within 1σ and are combined to give the correction
SW,Z
mat = 1.0488 ± 0.0020 applied to the simulation. Figure 14 shows the E/p distributions for both W → eν and

Z → ee data after the correction factor is applied. Displayed on each of these distributions in this figure is the
quantity ∆Smat ≡ Smat − 1, which averages to zero over the W → eν and Z → ee samples.

The accurate simulation of electron and photon showers requires knowledge of the amount of CEM material [37].
The relative fraction of electron candidates with low E/p (0.90 < E/p < 0.93) to those in the range 0.90 < E/p < 1.09
is sensitive to longitudinal shower leakage, and hence the CEM thickness in radiation lengths. A maximum likelihood
fit to this fraction is used to tune the radiation-length (X0) thickness of each tower by ≈ 0.1X0. The statistical


