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Dimension-6 operators modify pole masses, vertex factors, and the vev
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Parameter Input Value Ref.

m̂Z 91.1875± 0.0021 [19, 32, 33]

ĜF 1.1663787(6)× 10−5 [32, 33]

α̂ew 1/137.035999074(94) [32, 33]

Table 1. Current best estimates of the core input parameters used to make predictions in the
SMEFT.

muon decays ĜF and the measured Z mass (m̂Z). It is convenient to relate observables in

terms of the parameters g2, sin2 θ = g21/(g
2
1 + g22) and the electroweak vacuum expectation

value (vev) v. Defining at tree level the effective measured mixing angle

sin2 θ̂ =
1

2
−

1

2

√

1−
4πα̂ew√
2 ĜF m̂2

Z

, (2.1)

then the measured value of the SUL(2) gauge coupling can be inferred (at tree level) via

ĝ2 sin θ̂ = 2
√
π α̂1/2

ew . (2.2)

The effective measured vacuum expectation value (vev) in the SM can be defined as

v̂2 = 1/
√
2 ĜF . All of these input parameters are redefined going from the SM to the

SMEFT, and the resulting shifts are characterized in section 2.1. We will consistently

use the notation that the measured parameters, or inferred measured parameters (such as

sin2 θ̂, ĝ2), are denoted with a hat superscript. In relating predictions to these input pa-

rameters we will consistently only include corrections in the SMEFT that are suppressed

by v̄2T /Λ
2, neglecting v̄4T /Λ

4 contributions. For this reason SMEFT parameters multi-

plying insertions of higher dimensional operators can be traded for α̂ew, v̂2, m̂Z using the

SM relations.6

2.1 Input parameters

Calculating expressions, we use the canonically normalized SMEFT in the basis of ref. [15].

By canonically normalized, we mean that the kinetic terms of all propagating fields have

been taken to a minimal form, with a field and v̄2T independent Wilson coefficient. Many of

our results build upon the discussion in ref. [16]. For example, the canonically normalized

SMEFT Lagrangian parameters are denoted with bar superscripts, as defined in ref. [16].

The SM Lagrangian parameters and theoretical predictions for observables in the SM will

have no superscript (no hat and no bar) and if we stop at the leading order of the SM

value we will add: (. . .)SM to specify it. In the following sections we will use the shorthand

notation s2
θ̂
= sin2 θ̂, c2

θ̂
= cos2 θ̂.7 The canonically normalized gauge fields introduce the

gauge couplings given by g1,2 = ḡ1,2(1+CH(B,W ) v̄
2
T ). For completeness, we summarize the

relation between the SMEFT Lagrangian parameters and the measured input parameters

in this section.
6As well as these core input parameters, we also note that the values of

{

mt,αs,mH ,mc,mb,mτ ,

V ij
CKM ,∆α(5)

had, · · ·
}

are also required in a truly global EWPD analysis of all data.
7See the appendix for a discussion of the notational conventions.
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2.1.1 GF

We define the local effective interaction for muon decay as

LGF
= −

4ĜF√
2

(ν̄µ γ
µPLµ) (ē γµPLνe) . (2.3)

The parameter ĜF is fixed by measuring the muon lifetime in the SM EFT,

−
4ĜF√

2
= −

2

v̄2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(

C(3)
Hl
ee

+ C(3)
Hl
µµ

)

. (2.4)

In the limit of U(3)5 flavour symmetry, this expression simplifies to

ĜF =
1√
2 v̄2T

−
1√
2
Cll +

√
2C(3)

Hl . (2.5)

We identify ĜF with the measured value of the Fermi constant in the U(3)5 limit as ĜF in

this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients,

and that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit

CH → 0. Many expressions that follow have explicit dependence on v̄T , which is related

to ĜF via eq. (2.5) as

v̄2T =
1

√
2ĜF

+
δGF

ĜF

, when, δGF =
1

√
2 ĜF

(√
2C(3)

Hl −
Cll√
2

)
. (2.7)

In what follows we use δGF , but note that the flavour dependence of this parameter is

trivial to re-introduce, and this shift can be considered to be implicitly flavour dependent.

2.1.2 MZ

The mass eigenstate of the Z boson is redefined as

M̄2
Z =

v̄2T
4

(
g1

2 + g2
2
)
+

1

8
v̄4TCHD

(
g1

2 + g2
2
)
+

1

2
v̄4T g1g2CHWB. (2.8)

The difference between the M̂Z input parameter and the SM expression for the Z mass

(in the SMEFT) defines δM2
Z as

δM2
Z ≡ M̂2

Z −
v̄2T
4

(
g1

2 + g2
2
)
= −

1

2
√
2

M̂2
Z

ĜF

CHD −
2 21/4

√
π
√
α̂ M̂Z

Ĝ3/2
F

CHWB. (2.9)

Note that this difference is defined in terms of the vev in the SMEFT — v̄T . The SM

relations between Lagrangian parameters and input parameters are used on the right hand

side of eq. (2.9), as the SMEFT corrections to these relations are higher order in v̄2T /Λ
2.
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this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients,

and that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit

CH → 0. Many expressions that follow have explicit dependence on v̄T , which is related
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µPLµ) (ē γµPLνe) . (2.3)
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2.1.3 sin2 θ

The kinetic mixing introduced by the operator with Wilson coefficient CHWB leads to a

redefinition of the usual sθ = sin θ mixing angle of the SM given by

s2
θ
=

g1
2

g2
2 + g1

2 +
g1g2

(
g2

2 − g1
2
)

(
g1

2 + g2
2
)2 v̄2TCHWB. (2.10)

Here s2
θ
is used to rotate to the mass eigenstate fields in the SMEFT. As a short hand

notation, we define

δs2θ ≡ sin2 θ̂−sin2 θ̄ = −
sθ̂ cθ̂

2
√
2 ĜF

(
1−2s2

θ̂

)
[
sθ̂ cθ̂

(
CHD+4C(3)

Hℓ−2Cll

)
+2CHWB

]
. (2.11)

2.2 Gauge couplings in the SMEFT: ḡ1, ḡ2

We relate the Lagrangian parameters ḡ2, ḡ1 to the input parameters at tree level via

ḡ21 + ḡ22 = 4
√
2 ĜF M̂2

Z

(

1−
√
2 δGF −

δM2
Z

M̂2
Z

)

, (2.12)

ḡ22 =
4π α̂

s2
θ̂

[

1 +
δs2θ
s2
θ̂

+
ĉθ
ŝθ

1
√
2 ĜF

CHWB

]

. (2.13)

2.3 MW in the SMEFT

The mass of the W boson is redefined in the SMEFT as

M̄2
W =

ḡ22 v̄
2
T

4
. (2.14)

Expressing M̄2
W in terms of the inputs parameters we get:

M̄2
W = M2

W

(

1 +
δs2
θ̂

s2
θ̂

+
cθ̂

sθ̂
√
2ĜF

CHWB +
√
2δGF

)

= M2
W − δM2

W , (2.15)

where δM2
W = −M2

W

(
δs2

θ̂

s2
θ̂

+
c
θ̂

s
θ̂

√
2ĜF

CHWB +
√
2δGF

)
.

3 Redefinition of vector boson couplings

3.1 Neutral currents

3.1.1 Redefinition of Z couplings

The effective axial and vector couplings of the SMEFT Z boson are defined as follows

LZ,eff = 221/4
√
ĜF M̂Z

(
JZℓ
µ Zµ + JZν

µ Zµ + JZu
µ Zµ + JZd

µ Zµ
)
, (3.1)

where (JZx
µ )pr = x̄p γµ

[
(ḡxV )

pr
eff − (ḡxA)

pr
eff γ5

]
xr for x = {u, d, ℓ, ν}. In general, these currents

are matricies in flavour space. When we restrict our attention to the case of a minimal

linear MFV scenario (JZx
µ )pr ≃ (JZx

µ )δpr. In the standard basis, the effective axial and

vector couplings are modified from the SM values by a shift defined as

δ(gxV,A)pr = (ḡxV,A)
eff
pr − (gxV,A)

SM
pr , (3.2)
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ḡ22 =
4π α̂

s2
θ̂

[

1 +
δs2θ
s2
θ̂

+
ĉθ
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where

δ(gℓV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2ĜF

(

−sθ̂cθ̂CHWB − CHe
pr
− C(1)

Hℓ
pr

+ C(3)
Hℓ
pr

)

− δs2θ, (3.3)

δ(gℓA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − CHe
pr

+ C(1)
Hℓ
pr
− C(3)

Hℓ
pr

)

, (3.4)

δ(gνV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
Hℓ
pr
− C(3)

Hℓ
pr

)

, (3.5)

δ(gνA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
Hℓ
pr
− C(3)

Hℓ
pr

)

, (3.6)

δ(guV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−
sθ̂ cθ̂
3

CHWB + C(1)
Hq
pr

+ C(3)
Hq
pr

+ CHu
pr

)

+
2

3
δs2θ, (3.7)

δ(guA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(
− sθ̂ cθ̂ CHWB − C(1)

Hq
pr
− C(3)

Hq
pr

+ CHu
pr

)
, (3.8)

δ(gdV )pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF

(
+
sθ̂ cθ̂
3

CHWB − C(1)
Hq
pr

+ C(3)
Hq
pr
− CHd

pr

)

−
1

3
δs2θ, (3.9)

δ(gdA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF

(
−sθ̂ cθ̂ CHWB + C(1)

Hq
pr
− C(3)

Hq
pr
− CHd

pr

)
. (3.10)

3.1.2 Redefinition of A couplings

For the electromagnetic current we define:

LA,eff =
√
4πα̂

[
Qx J

A,x
µ

]
Aµ. (3.11)

for x = ℓ, u, d. The measured effective electromagnetic coupling α̂ is directly identified

with the modified coupling present in the SMEFT: ᾱ = ē2/4π, with ē given by

ē = ḡ2 sθ̄ =
√
4πα̂

[
1 +

cθ̂
sθ̂

1

2
√
2ĜF

CHWB

]
. (3.12)

This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.

3.2 Charged currents

For the charged currents, we define

LW,eff =

√
2π α̂

sθ̂

[(
JW±,ℓ
µ

)

pr
Wµ

± +
(
JW±,q
µ

)
pr
Wµ

±

]
, (3.13)
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where in the SM one has
(
JW+,ℓ
µ

)

pr
= ν̄p γ

µ
(
ḡW+,ℓ
V − ḡW+,ℓ

A γ5
)
ℓr, (3.14)

(
JW−,ℓ
µ

)

pr
= ν̄p γ

µ
(
ḡW−,ℓ
V − ḡW−,ℓ

A γ5
)
ℓr. (3.15)

In the SMEFT we note that in the flavour symmetric limit

δ
(
gW±,ℓ
V

)

rr
= δ

(
gW±,ℓ
A

)

rr
=

1

2
√
2ĜF

(
C(3)
Hℓ
rr

+
ĉθ
ŝθ

CHWB

)
+

1

2

δs2θ
s2
θ̂

. (3.16)

Note that although the corrections in the SMEFT shown preserve the left handed

structure of the current for the lepton couplings, we introduce a separate axial and vector

coupling for later convenience. For the quark charged currents one similarly finds

δ
(
gW±,q
V

)

rr
= δ

(
gW±,q
A

)

rr
=

1

2
√
2ĜF

(
C(3)
Hq
rr

+
ĉθ
ŝθ

CHWB

)
+

1

2

δs2θ
s2
θ̂

. (3.17)

There is also dependence on the operator QHud
rr

for the W quark current. When we assume

linear MFV, the Wilson coefficient of this operator is suppressed by

CHud
rr
∝
[
Yu Y

†
d

]

rr
, (3.18)

and in this case, this contribution is neglected for reasons of consistency. Light quark mass

suppressed corrections are neglected in the SM predictions of many of the observables

considered here, and also when higher dimensional operators are inserted.

4 Observables

Whenever possible, we express all observables in terms of shifts of the form

δGF , δM
2
Z , δM

2
W , δs2θ, δg

x
V,A, δg

W±,y
V.A . (4.1)

Here x = ℓ, u, d and y = ℓ, q. Added to these corrections for each observable are contribu-

tions due to explicit operator insertions that are not (easily) expressible in terms of these

common shifts. These net shift variables do not correspond to a basis for L(6), they are

simply a convenient shorthand notation for some terms in the effective Lagrangian.

4.1 Differential cross section for ℓ+ℓ− → ff̄

Observables that are not limited to the Z pole are an important source of information on

Wilson coefficients present in the SMEFT. Corrections to the 2→ 2 differential spectrum

predicts the total cross sections σℓ+ℓ−→f f̄ where f = {ℓ, u, c, b, d, s} (here the final and

initial state leptons are defined to not have the same flavour), as well as the differential

and angular observables for these processes. A general expression in the SMEFT valid

for on and off resonance scattering includes a contribution from Z and γ exchange as well

as the effect of ψ4 operators and the interference of all of these terms, see figure 1. Our

discussion of this general expression in the SMEFT will largely build on the discussion in

ref. [19] which itself borrows heavily from ref. [34].8

8For classic related results, that are outside of the systematic SMEFT analysis presented here,

see ref. [35].
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Hℓ
pr

+ C(3)
Hℓ
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3.1.2 Redefinition of A couplings

For the electromagnetic current we define:

LA,eff =
√
4πα̂

[
Qx J

A,x
µ

]
Aµ. (3.11)

for x = ℓ, u, d. The measured effective electromagnetic coupling α̂ is directly identified

with the modified coupling present in the SMEFT: ᾱ = ē2/4π, with ē given by

ē = ḡ2 sθ̄ =
√
4πα̂

[
1 +

cθ̂
sθ̂

1

2
√
2ĜF

CHWB

]
. (3.12)

This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.

3.2 Charged currents

For the charged currents, we define

LW,eff =

√
2π α̂

sθ̂

[(
JW±,ℓ
µ

)

pr
Wµ

± +
(
JW±,q
µ

)
pr
Wµ

±

]
, (3.13)
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2 ĜF

(
+
sθ̂ cθ̂
3

CHWB − C(1)
Hq
pr

+ C(3)
Hq
pr
− CHd

pr

)

−
1

3
δs2θ, (3.9)

δ(gdA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

+
1

4
√
2 ĜF
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2 ĜF

(

−sθ̂ cθ̂ CHWB − C(1)
Hℓ
pr
− C(3)

Hℓ
pr

)

, (3.5)

δ(gνA)pr = −
δGF√

2
−
δM2

Z

2M̂2
Z

−
1

4
√
2 ĜF
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2ĜF

CHWB

]
. (3.12)

This means the shift in the definition of α given in the previous equation is unobservable,

considering our chosen input parameters. As such we can trade ᾱ directly for α̂.
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