

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Istituto Nazionale di Fisica Nucleare

Charm hadronization measurements with the ALICE experiment

Marco Giacalone for the ALICE Collaboration

QCD@Work

International Workshop on QCD Theory and Experiment June 27-30, 2022 Lecce, Italia

Introduction

- Charm quarks are produced at the early stages of the collision due to their large mass → described by pQCD calculations
- ALICE measured a charmed baryon-tomeson ratio in pp higher than e⁺e⁻ → non-universality of charm fragmentation?
- In this presentation the latest measurements in pp collisions at $\sqrt{s} = 5.02$ and 13 TeV, and in p-Pb and Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV will be shown

$\frac{d\sigma^{H_{c}}}{dp_{T}^{H_{c}}} = f_{1}(x_{1}, \mu_{f}) \cdot f_{2}(x_{2}, \mu_{f}) \otimes \frac{d\sigma^{c}}{dp_{T}^{c}}(x_{1}, x_{2}, \mu_{f}, \mu_{r}) \otimes D_{c \to H_{c}}(z_{c} = \frac{p_{H_{c}}}{p_{c}}, \mu_{f}^{2})$ Parton distribution functions (PDFs) Parton distribution (obtained via pQCD) $P_{1} \qquad P_{2} \qquad p_{2} = x_{2}P_{2}$ $f(p_{1}, p_{2})$ $P_{2} \qquad p_{2} = x_{2}P_{2}$

- Measurements in pp collisions are fundamental for testing perturbative QCD (pQCD) calculations
- Cross section computed with the factorization approach including:
 - Parton distribution functions
 - Hard scattering cross section
 - Fragmentation function
- Assumption of universal fragmentation functions (FF) \rightarrow constrained from e⁺e⁻ and ep

Heavy Flavour reconstruction

- Cross section measurements based on invariant-mass analysis → selection based on PID of daughter particles and decay topology
- Exploiting excellent impact parameter resolution provided by the ITS detector

Meson-to-meson vs baryon-to-meson ratios

Meson-to-meson vs baryon-to-meson ratios

International Workshop on QCD

QCD@Work ALICE Collaboration

D mesons in pp collisions JHEP 05 (2021) 220

QCD@Work ALICE Collaboration

Calculations based on factorization approach describe well prompt production

12

- GM-VFNS underestimates D mesons from b quarks
- Data provide good costraints for models \rightarrow Results uncertainties lower than theory ones

Phys. Rev. Lett. 128, 012001 Phys. Rev. Lett. 127, 202301

Λ_c^+ in pp collisions

Prompt Λ_c^+/D^0 dependent on 1 D_c⁺D 9.0 pp, $\sqrt{s} = 5.02 \text{ TeV}$ $p_{\rm T} \rightarrow$ centre of mass energy ALICE Preliminary |v| < 0.5independent (5.02 and 13 TeV) < 0.5 ALICE Preliminary ALICE (PRL 127 (2021) 202301 0.8 pp, √*s* = 13 TeV ● Phys. Rev. Lett. 128, 012001 0.8 PYTHIA 8 (Monash) 0.7 PYTHIA 8 (CR Mode 2) New preliminary measurement • Préliminary HERWIG 7 0.6 pp, √s = 5.02 TeV ■ Phys. Rev. Lett. 127, 202301 Catania, fragm.+coal performed down to $p_{\rm T} \approx 0$ 0.6M. He and R. Rapp: Préliminary 0.5 SH model + PDG SH model + RQM 0.4 • Flat e⁻e⁺ trend not describing the 0.3 -NEW decreasing trend vs $p_{T} \rightarrow \text{models } 0.2$ 0.2 e⁻e⁺ constrained included 0.1 0 20 5 10 15 25 p_{τ} (GeV/c) Models including enhanced p_{τ} (GeV/c) $0.113 \pm 0.013 \pm 0.006$ LEP results, EPJC 75, 19 (2015) ALT-PREL-50245 heavy-flavour hadronization mechanisms provide a better description of the results How do the models work QCD@Work ALICE Collaboration International Workshop on QCD Marco Giacalone – University and INFN Bologna

Phys. Rev. Lett. 127, 202301

Λ_{c}^{+} in pp collisions

- PYTHIA8 with enhanced Colour Reconnection (CR) S •
 - "Junction" topology recombination between quarks and gluons
- Catania
 - Assumption of light quarks and gluons thermalised system
 - Hadron formation by: fragmentation + coalescence dominant at $p_{\rm T} \approx 0$
- Statistical Hadronization Model and Relativistic Quark Model (SHM+RQM)
 - hadronization by statistical weights + enhanced set of excited charm baryons providing strong

feed-down -

QCD@Work ALICE Collaboration

PDG/RQM define quantity of decaying additional baryons

International Workshop on QCD

Marco Giacalone – University and INFN Bologna

$\frac{Phys. Rev. Lett. 128 (2022) 012001}{\sum_{C}} \sum_{C}^{0,+,++} (2455) \text{ at } \sqrt{s} = 13 \text{ TeV}$

*Pythia8 with Monash: arXiv:1404.5630
*Pythia8 with Colour reconnection beyon<u>d</u> leading colour (CR-BLC): JHEP 08 (2015) 003
*Statistical Hadronization Model with predictions of Relativistic Quark Model (SHM+RQM): Phys. Lett. B 795 (2019) 117–121
*Quark (re-)Combination Model (QCM): Eur. Phys. J. C 78 no. 4, (2018) 344

*Catania Model: arXiv:2012.12001

- Ratio larger than e⁺e⁻ results \rightarrow Underestimated by PYTHIA8 with Monash tune $\rightarrow \Sigma_c^{0,+,++}/D^0$ shows a larger enhanchement compared to Λ_c^+/D^0
- SHM+RQM, QCM, Catania models describe well the experimental data

QCD@Work ALICE Collaboration

Strange charmed baryon production: $\Xi_c^{0,+}$

 Ξ_0^0/D^0

 Ξ_{a}^{+}/D^{0}

QCM

SHM+RQM

Catania (coal.+fragm.)

PYTHIA 8.243

Monash Mode 0 Mode 2

BR unc.

.6

0.5

0.4

0.3

ALI-PUB-487391

ALICE

|y| < 0.5

pp, $\sqrt{s} = 13 \text{ TeV}$

Ratio Ξ_c^0/D^0 enhanced by a factor \approx 30 at low p_{T} considering PYTHIA8 with Monash tune

QCD@Work ALICE Collaboration

Baryon-to-meson ratio Baryon-to-baryon ratio 0.2 Mode 3 All models 0. underestimate the 10^{-1} $\Xi_c^{0,+}/D^0$ ratios 10 12 2 6 8 10 2 8 14 4 $p_{_{\rm T}}$ (GeV/c) p_{τ} (GeV/c)

- $\Xi_c^0/\Sigma_c^{0,+,++}$ in pp agrees with PYTHIA8 Monash Tune \rightarrow Similar enhancement in pp w.r.t. $e^+e^$ collisions?
- Catania model describes well baryon ratios \rightarrow closer than other theories for the D⁰ ratio

Phys. Rev. Lett. 127. 272001

Data

Catania

QCN SHM+RQM

PYTHIA 8 Monash

PYTHIA 8 Mode

ALICE

|v| < 0.5

BR unc.

10**⊧**

pp, $\sqrt{s} = 13 \text{ TeV}$

Doubly strange charmed baryon production: Ω_c^{0}

First measurement in pp collisions at \sqrt{s} = 13 TeV

- Branching ratio (BR) of $\Omega_c^{\ 0} \rightarrow \Omega_c^{\ -} \pi^+$ from calculations \rightarrow Used to scale model predictions
- Ω_c^{0}/D^0 and Ω_c^{0}/Ξ_c^{0} are larger than theoretical predictions \rightarrow Catania model closer to data in describing baryon-tobaryon ratio when adding higher mass resonance decays

QCD@Work ALICE Collaboration

International Workshop on QCD

Λ_c^+/D^0 + charm fragmentation with pp and p-Pb

- Ratio Λ_c^+/D^0 in p-Pb collisions larger than in pp for $p_T > 3$ GeV/ $c \rightarrow$ harder p_T spectrum
- Charm fragmentation fractions compatible in pp and p-Pb

Baryon enhancement compared to e⁺e⁻ and ep measurements

International Workshop on QCD

Summary

- From the analysis of heavy-flavour baryons production we learned:
 - Additional hadronization mechanisms in pp could take place compared to e⁺e⁻/ep → models including enhanced production of baryons better describe the measurements

More studies needed to discriminate among different theoretical descriptions

- Fragmentation fractions are not universal → baryon-to-meson ratios are not the same in different collisions systems
- New measurements will be performed opening new physics horizons thanks to:

International Workshop on QCD

- RUN 3 higher statistics and improved tracking resolution
- ALICE3: a new heavy-ion experiment for RUN 5 and 6

High accuracy B-hadronMulti-charmresults down to 0 GeV/cbaryons

QCD@Work ALICE Collaboration

Marco Giacalone – University and INFN Bologna 15

Much more

Thank you for your attention

Marco Giacalone for the ALICE Collaboration

mgiacalo@cern.ch

Detector setup

- Inner Tracking System (ITS) and Time Projection Chamber (TPC)
 → charged particles tracking
- TPC and Time Of Flight (TOF)
 → Particle Identification (PID)
- V0 \rightarrow centrality

Rapidity coverage Central barrel $\rightarrow |\eta| < 0.9$

