High- p_T results and parton density functions from ATLAS.

Javier Llorente on behalf of the ATLAS Collaboration.

Simon Fraser University

QCD @ work 2022 - June 28, 2022

Introduction

- The QCD cross section can be factorised in three parts: IS, HS, FS.
- The ATLAS Collaboration has published important QCD results recently.
- Measurements are exploited to understand these three parts separately.

$$d\sigma = \sum_{i,j,a,b} \int_{\Omega} d^2 \vec{x} d^2 \vec{z} f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \times d\hat{\sigma}_{ij \to ab}(\vec{x}, \mu_R^2) \times D_a^h(z_3, Q^2) D_b^h(z_4, Q^2)$$

ATLAS global PDF fit at $\sqrt{s} = 7$, 8, 13 TeV [EPJC 82, 438 (2022)]

- Determination of parton distribution functions using HERA + ATLAS data.
- Multiple datasets used at different pp centre-of-mass energies $\sqrt{s} = 7, 8, 13$ TeV.
- Theoretical predictions at NNLO QCD + NLO EW (current state-of-the-art).
- Uncertainties on (μ_R, μ_F) treated as correlated in the fit where they are sizeable with respect to experimental systematics.
- Detailed study of correlations between different ATLAS datasets.
- Extended PDF parameterisation using 21 parameters.

Data set	\sqrt{s} [TeV]	Luminosity [fb ⁻¹]	Decay channel	Observables entering the fit
Inclusive $W, Z/\gamma^*$	7	4.6	e, μ combined	$\eta_{\ell}(W), y_Z(Z)$
Inclusive Z/γ^*	8	20.2	e, μ combined	$\cos \theta^*$ in bins of $y_{\ell\ell}, m_{\ell\ell}$
Inclusive W	8	20.2	μ	η_{μ}
W^{\pm} + jets	8	20.2	е	p_{T}^W
Z + jets	8	20.2	е	$p_{\rm T}^{\rm jet}$ in bins of $ y^{\rm jet} $
tī	8	20.2	lepton + jets, dilepton	$m_{t\bar{t}}, p_{\mathrm{T}}^t, y_{t\bar{t}}$
tī	13	36	lepton + jets	$m_{t\bar{t}}, p_{T}^{t}, y_{t}, y_{t\bar{t}}^{b}$
Inclusive isolated γ	8,13	20.2, 3.2	-	$E_{\rm T}^{\gamma}$ in bins of η^{γ}
Inclusive jets	7, 8, 13	4.5, 20.2, 3.2	-	$p_{\rm T}^{\rm jet}$ in bins of $ y^{\rm jet} $

ATLAS global PDF fit at $\sqrt{s} = 7$, 8, 13 TeV [EPJC 82, 438 (2022)]

- Comparison to global PDF sets (CT18, NNPDF, MSHT20, ...)
- Inclusion of ATLAS data brings ATLAS PDF closer to global PDF sets than to HERAPDF.
- Measurement of $R_s(x, Q^2) = x(s + \bar{s})/x(\bar{u} + \bar{d})$.
- Uncertainties estimated using different tolerances $T = \sqrt{\Delta \chi^2} = 1, 3.$

0.

ATLAS Z-boson + high- p_T jets at $\sqrt{s} = 13$ TeV [arXiv:2205.02597]

- $Z \rightarrow ee \ (\mu\mu)$ with additional jets ($p_T > 100$ GeV).
- High- p_T region is selected with $p_T^{\text{jet}} > 500 \text{ GeV}$.
- Z-boson radiation $\propto \alpha_s \ln^2(p_{T,j_1}/m_Z)$.

- Different angular topologies studied using $\Delta R_{Zj} = \sqrt{\Delta y_{Zj}^2 + \Delta \phi_{Zj}^2}$.
- Comparison to different ME+PS and fixed-order predictions.

 $High-p_T$

High- p_T results and parton densities

ATLAS Z-boson + high- p_T jets at $\sqrt{s} = 13$ TeV [arXiv:2205.02597]

• Measurement of
$$r_{Zj} = \frac{p_{T,\ell\ell}}{p_T(\text{closest jet})}$$
 in ΔR bins.

- Excellent description by NNLO QCD + NLO EW.
- Sherpa 2.2.1 and MG5_aMC+Py8 overestimate the cross section at high p_T.
- Sherpa 2.2.11 and FxFx merging for MG5_aMC+Py8 provide an improved description.

Back-to-back

<u>Collinear</u>

lσ / dr_{zj} [pb]

10

10⁻² 1.5 1 0.5

Pred. / data

0

0.5

Measurement of TEEC at $\sqrt{s} = 13$ TeV [ATLAS-CONF-2020-025]

TEEC: The x_{Γ} -weighted distribution of differences in azimuth between jets *i* and *j*, with $x_{\Gamma i} = \frac{E_{\Gamma i}}{\sum E_{T \mu}}$

$$\frac{1}{\sigma}\frac{d\Sigma}{d(\cos\phi)} = \frac{1}{\sigma}\sum_{ij}\int\frac{d\sigma}{dx_{\mathrm{T}i}dx_{\mathrm{T}j}d(\cos\phi)}x_{\mathrm{T}i}x_{\mathrm{T}j}dx_{\mathrm{T}i}dx_{\mathrm{T}j}$$

And the azimuthal asymmetry ATEEC is defined as

 $\frac{1}{\sigma} \frac{d\Sigma^{\text{asym}}}{d(\cos\phi)} \equiv \left. \frac{1}{\sigma} \frac{d\Sigma}{d(\cos\phi)} \right|_{\phi} - \left. \frac{1}{\sigma} \frac{d\Sigma}{d(\cos\phi)} \right|_{\pi-\phi}$

Measurement of TEEC at $\sqrt{s} = 13$ TeV [ATLAS-CONF-2020-025]

Comparison of TEEC (left) and ATEEC (right) with NLO predictions ($\mu = \hat{H}_T$)

Non-perturbative corrections of $\mathcal{O}(1\%)$. Very good data / theory agreement.

Measurement of TEEC at $\sqrt{s} = 13$ TeV [ATLAS-CONF-2020-025]

• $\alpha_s(Q)$ is determined by minimizing a $\chi^2(\alpha_s, \vec{\lambda})$ function for each H_{T2} bin.

 $\alpha_s(m_Z) = 0.1196 \pm 0.0001 \text{ (stat.)} \pm 0.0004 \text{ (sys.)}^{+0.0071}_{-0.0104} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)}.$

- Uncertainties dominated by μ -variations. PDFs and NP very small over H_{T2} .
- Total experimental uncertainties (stat. \oplus syst.) are generally below 1%.

ATLAS diphoton cross section at $\sqrt{s} = 13$ TeV [JHEP 11, 169 (2021)]

- Measurement of $\gamma\gamma$ production for $p_T(\gamma_1) > 40$ GeV, $p_T(\gamma_2) > 30$ GeV.
- Direct, $H \rightarrow \gamma \gamma$ and fragmented γ signal, against non-prompt background.
- Background estimated from (ID, iso) sidebands for 2 photons (16 regions).
- Poisson likelihood fit performed separately on each bin of each observable.

ATLAS diphoton cross section at $\sqrt{s} = 13$ TeV [JHEP 11, 169 (2021)]

- Comparison to ME+PS and fixed-order pQCD predictions.
- Sherpa (NLO+PS) and NNLOJet give a good description.
- NNLOJet fails in soft-log sensitive region at low- p_T .
- NNLOJet provides improved scale precision wrt NLO.
- DiPhox (NLO) fails to describe the data.

High- p_{T} results and parton densities

ATLAS *b*-fragmentation to B^{\pm} at $\sqrt{s} = 13$ TeV [JHEP 12, 131 (2021)]

- Fragmentation observables for jets containing $B^{\pm} \rightarrow J/\psi K^{\pm}$ at $\Delta R < 0.4$
- Fully reconstructed decay from $\mu\mu K$ tracks.
- Longitudinal and transverse profiles of B^{\pm} :

$$z = rac{ec{p}_J \cdot ec{p}_B}{ec{p}_J ec{q}^2}; \qquad p_T^{
m rel} = rac{ec{p}_J imes ec{p}_B ec{q}}{ec{p}_J ec{q}}$$

Jets / GeV

10

ATLAS vs = 13 TeV, 139 fb

Pythia 8.240 (A14) Pythia 8.240 (A14-rb)

Stat. uncertainty only Data Sherpa 2.2.5 (Lund)

ATLAS *b*-fragmentation to B^{\pm} at $\sqrt{s} = 13$ TeV [JHEP 12, 131 (2021)]

- Comparison to different ME+PS+fragmentation models.
- Pythia, Sherpa, H7 with different fragmentation/PS.
- Pythia A14-rb uses fitted $r_b = 1.05$ from LEP+SLD data.
- Sensitivity to $g \rightarrow b\bar{b}$ splitting is investigated.
- Discrepancies observed with H7 dipole shower $(g \rightarrow b\overline{b})$.
- Sherpa cluster model shows discrepancies at high z.

ATLAS *b*-fragmentation in $t\bar{t}$ at $\sqrt{s} = 13$ TeV [arXiv:2202.13901 (hep-ex)]

- Event selection in $t\bar{t} \rightarrow b\bar{b}e^{\pm}\mu^{\mp}$ dileptonic events.
- Exactly two jets: tag one jet, use the other as probe.
 - Probe jet should contain SV with at least 3 tracks.
 - If both jets are tagged, both jets are measured.
- Tracks from secondary vertex used to reconstruct \vec{p}_b^{ch} .
- All ghost-associated tracks used to reconstruct \vec{p}_{jet}^{ch} .

Javier Llorente

High-p_T results and parton densities

beam

ATLAS *b*-fragmentation in $t\bar{t}$ at $\sqrt{s} = 13$ TeV [arXiv:2202.13901 (hep-ex)]

- Results are in reasonable agreement with MC expectations.
- Powheg + Pythia 8 gives a good description of the data.
- Powheg + Herwig 7.1.3 shows large differences at low z.
- Sherpa 2.2.10 provides the best overall description.

- Wide variety of QCD measurements recently released by ATLAS.
- Different analyses sensitive to different aspects of the QCD modelling.
- PDF fits have been performed using multiple ATLAS datasets.
- *Z*+jets and multijet final states are thoroughly explored.
- Diphoton cross section compared to theoretical predictions up to NNLO.
- b-quark fragmentation explored in two different final states.
 - In dijets with B^{\pm} production, with explicit sensitivity to $g \rightarrow b\bar{b}$.
 - In $t\bar{t}$ using charged momentum of *B*-hadrons.
- Stay tuned for more interesting results!

Backup slides

Comparison of ATLAS PDF to global MSHT20, NNPDF, ABMP16 fits.

Dependence of $z_{L,b}^{ch}$ and n_b^{ch} with α_s^{FSR}

