Exclusive semileptonic B-meson decays using lattice QCD and unitarity

in collaboration with:

G. Martinelli (Roma "La Sapienza"), M. Naviglio (Pisa), L. Vittorio (Pisa)

outline of the talk

- * the Dispersion Matrix approach: an attractive way to implement unitarity and Lattice QCD calculations in the analysis of exclusive semileptonic decays of hadrons [PRD '21 (2105.02497), PRD '21 (2105.07851), PRD '22 (2105.08674)]
- * results for $B_{(s)} \to D_{(s)}^{(*)} \ell \nu_{\ell}$ decays: extraction of $|V_{cb}|$ and theoretical determination of $R(D_{(s)}^{(*)})$ [PRD '22, 2109.15248, 2204.05925]
- * results for $B \to \pi \ell \nu_{\ell}$ and $B_s \to K \ell \nu_{\ell}$ decays: extraction of $|V_{ub}|$ [2202.10285, to appear in JHEP]

motivations

* two critical issues in semileptonic $B \to D^{(*)} \ell \nu_{\ell}$ decays

- exclusive/inclusive $|V_{cb}|$ puzzle:

exclusive (FLAG '21):
$$|V_{cb}|_{excl.} \cdot 10^3 = 39.36$$
 (68)

~2.7 σ difference excl./incl.

inclusive (HFLAV '21):
$$|V_{cb}|_{incl.} \cdot 10^3 = 42.19$$
 (78)

(Bordone et al. 2107.00604) $|V_{cb}|_{incl.} \cdot 10^3 = 42.16 (50)$

- $R(D^{(*)})$ anomalies:

$$R(D) = \frac{\mathcal{B}(B \to D\tau\nu_{\tau})}{\mathcal{B}(B \to D\ell\nu_{\ell})}$$

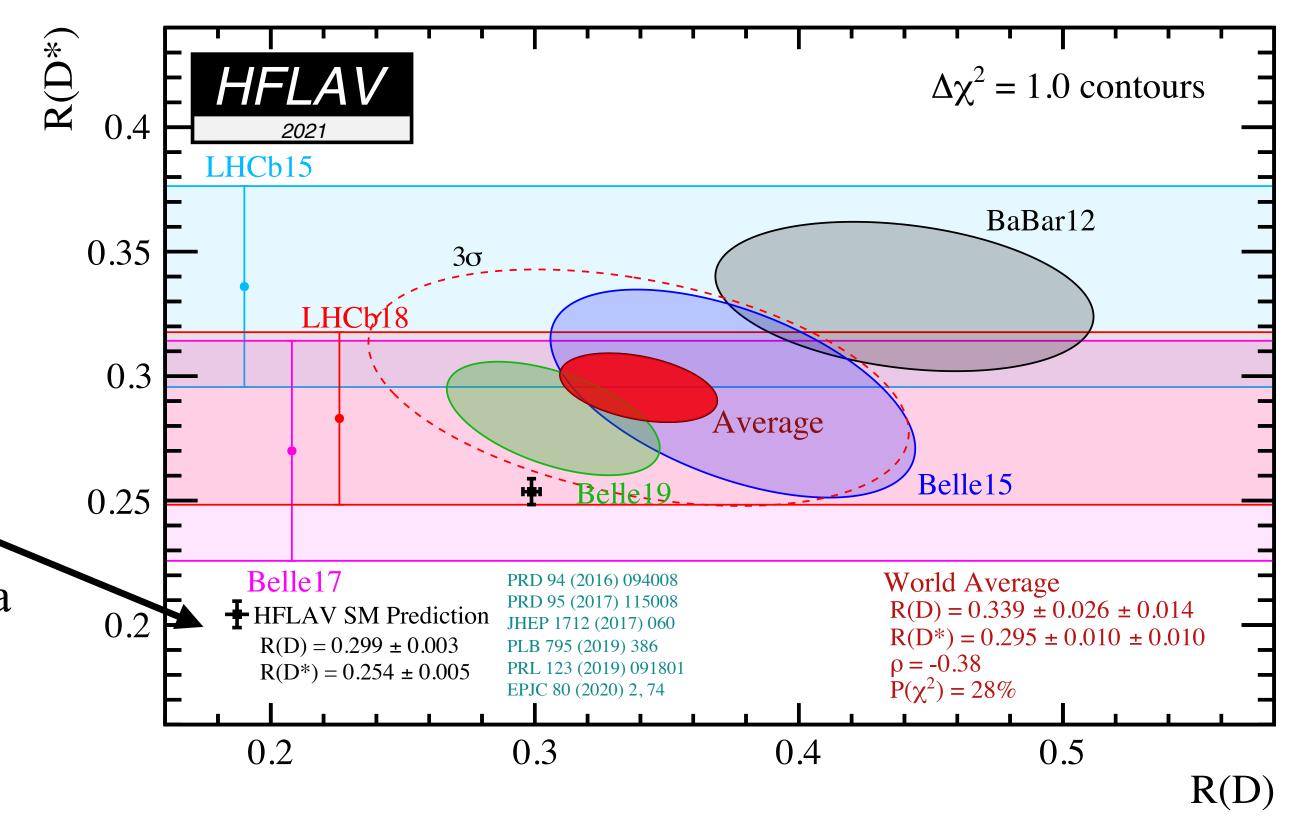
$$R(D^{*}) = \frac{\mathcal{B}(B \to D^{*}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{*}\ell\nu_{\ell})}$$

$$\ell = e, \mu$$

 \sim 3.4 σ differences between exp.'s and "SM"

"SM" = mix of theoretical calculations and experimental data to constrain the shape of the hadronic form factors (FFs)

pure SM predictions?



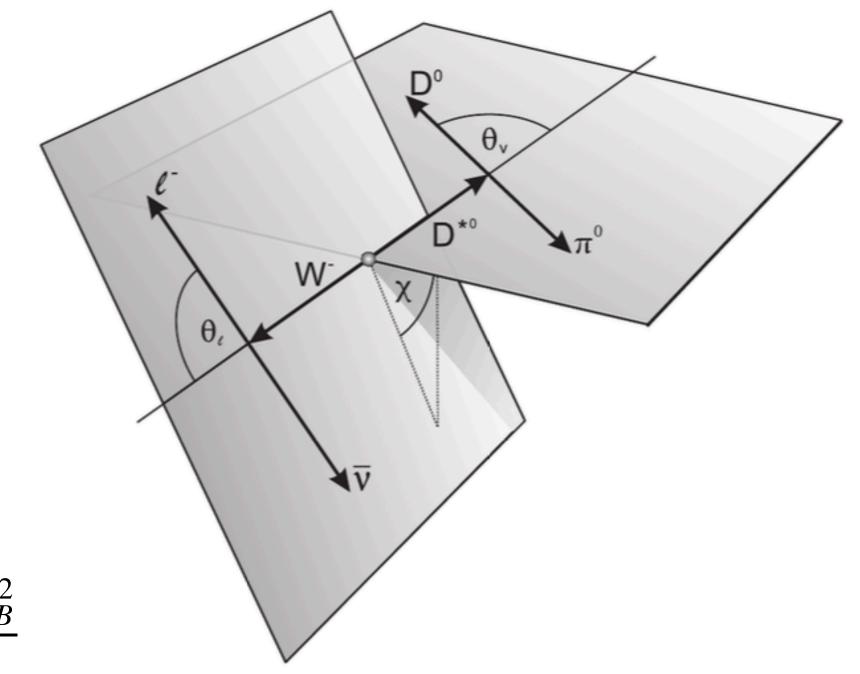
hadronic form factors in semileptonic $B \to D^{(*)} \ell \nu_{\ell}$ decays

$$\frac{d\Gamma(B \to D\ell\nu_{\ell})}{dq^2} = \frac{G_F^2}{24\pi^3} \eta_{EW}^2 |V_{cb}|^2 p_D^3 f_+^2(q^2)$$

for massless leptons ($\ell = e, \mu$)

$$\frac{d^{4}\Gamma(B \to D^{*}\ell\nu_{\ell})}{dw \; d\cos\theta_{v} \; d\cos\theta_{\ell} \; d\chi} = \frac{3}{4} \frac{G_{F}^{2}}{(4\pi)^{4}} \eta_{EW}^{2} |V_{cb}|^{2} m_{B}^{3} \; r^{2} \sqrt{w^{2} - 1} (1 + r^{2} - 2rw)$$

$$\cdot \left\{ H_{+}^{2}(w) \; \sin^{2}\theta_{v} \; (1 - \cos\theta_{\ell})^{2} + H_{-}^{2}(w) \; \sin^{2}\theta_{v} \; (1 + \cos\theta_{\ell})^{2} + H_{-}^{2}(w) \; \sin^{2}\theta_{v} \; \sin^{2}\theta_{v} \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{+}(w) \; \sin^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; (1 - \cos\theta_{\ell}) \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; (1 + \cos\theta_{\ell}) \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; (1 + \cos\theta_{\ell}) \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; (1 + \cos\theta_{\ell}) \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; (1 + \cos\theta_{\ell}) \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{\ell} \; \cos^{2}\theta_{v} + 2 \; H_{-}(w)H_{0}(w) \; \cos^{2}\theta_{v} \; \sin^{2}\theta_{v} + 2 \; H_{-}($$



$$g(w) = \frac{1}{r\sqrt{w^2 - 1}} \frac{H_+(w) - H_-(w)}{2m_B^2} \qquad r = \frac{m_{D^*}}{m_B} \qquad w = \frac{1 + r^2 - q^2/m_B^2}{2r}$$

$$f(w) = \frac{H_+(w) + H_-(w)}{2}$$

$$F_1(w) = m_B \sqrt{1 - 2rw + r^2} H_0(w)$$

for massive leptons ($\ell = \tau$) one should add $f_0(q^2)$ for $B \to D$ and $P_1(w)$ for $B \to D^*$

the form factors $f_{+(0)}(q^2)$ for $B \to D$ and $g(w), f(w), F_1(w), P_1(w)$ for $B \to D^*$ correspond to channels with definite spin-parity

* several parameterizations of the form factors are available in the literature: CLN, BCL, BGL, BSZ, ...

BGL approach

(Boyd, Grinstein and Lebed '95-'97)

$$\chi_{1^{-}}(q^{2}) = \text{transverse vector susceptibility} \equiv \frac{1}{2} \frac{\partial^{2}}{\partial (q^{2})^{2}} \left[q^{2} \Pi_{1^{-}}(q^{2}) \right] \xrightarrow{\text{dispersion relation}} \frac{1}{\pi} \int_{t_{+}}^{\infty} dt \frac{t \operatorname{Im}\Pi_{1^{-}}(t)}{(t - q^{2})^{3}} \qquad t_{\pm} = (m_{B} \pm m_{D})^{2}$$

$$\operatorname{Im}\Pi_{1^{-}} \propto \frac{1}{3} \sum_{i=1}^{3} \frac{1}{\pi} \int_{X}^{\infty} dt \frac{V_{+}(t) |f_{+}(t)|^{2}}{(t - q^{2})^{3}} \leq \chi_{1^{-}}(q^{2}) \qquad W_{+}(t) = \text{computable function depending on the FF}$$

$$\frac{1}{\pi} \int_{t_{+}}^{\infty} dt \frac{W_{+}(t) |f_{+}(t)|^{2}}{(t - q^{2})^{3}} \leq \chi_{1^{-}}(q^{2}) \qquad W_{+}(t) = \text{computable function depending on the FF}$$

* the hadronic form factors corresponding to definite spin-parity can be represented as an expansion, originating from unitarity, analyticity and crossing symmetry, in terms of the conformal variable z ($|z| \le 1$)

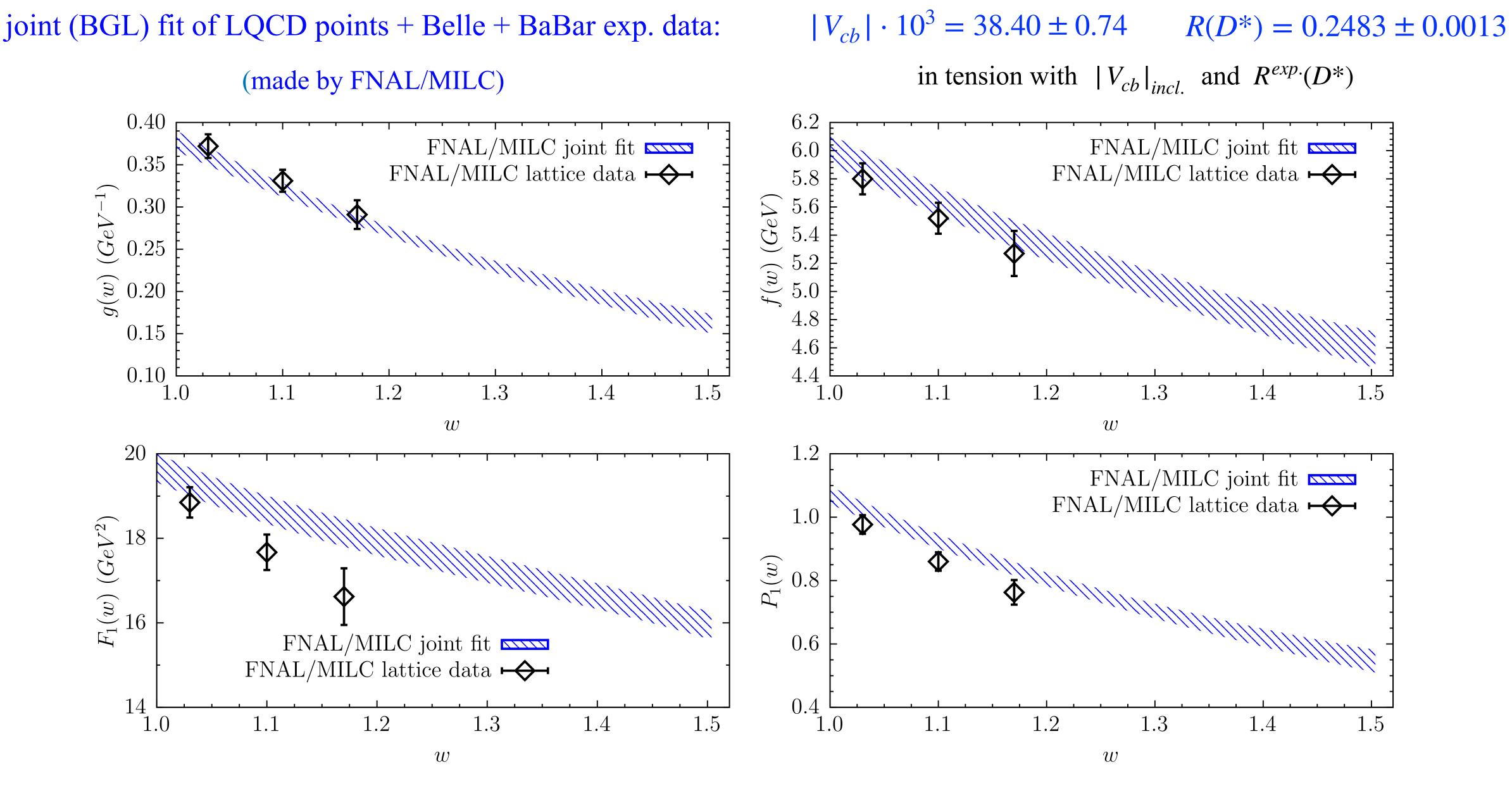
$$f_{+}(q^2) = \frac{1}{\sqrt{\chi_{1-}(q_0^2)}} \frac{1}{\phi_{+}(z(q^2), q_0^2)} \sum_{n=0}^{\infty} a_n z^n(q^2)$$

$$z(t) \equiv \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$

$$z(t) \equiv \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$
analytic function inside the unit circle of z
$$\phi_{+}(z(q^2), q_0^2) = \text{kinematical function} \qquad (q_0^2 = \text{auxiliary quantity})$$

 $P_+(z(q^2)) = \text{Blaschke factor including resonances below the pair-production threshold } t_+ = (m_B + m_D)^2$

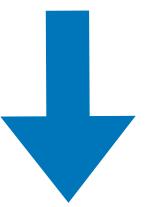
unitarity constraint:
$$\sum_{n=0}^{\infty} a_n^2 \le 1$$



to which theory do the joint-fit FFs belong? QCD? Are $|V_{cb}|$ and $R(D^*)$ pure SM predictions?

our goals

- *** no mixing among theoretical calculations and experimental data to describe the shape of the FFs
- *** FFs entirely based on theory and on first principles (i.e. Lattice QCD)
- *** susceptibilities (unitarity bounds) entirely based on first principles (i.e. Lattice QCD)
- *** extrapolation of the FFs in the whole kinematical range indepedent on any assumption about the momentum dependence of the FFs (i.e. no model dependence due to an explicit parameterization or z-expansion truncation)



Dispersion Matrix approach

Dispersion Matrix (DM) approach

* reappraisal and improvement of the method originally proposed by Bourrely et al. NPB '81 and Lellouch in NPB '96

$$\mathcal{M} = \begin{pmatrix} \langle \phi f | \phi f \rangle & \langle \phi f | g_{t} \rangle & \langle \phi f | g_{t_{1}} \rangle & \dots & \langle \phi f | g_{t_{N}} \rangle \\ \langle g_{t} | \phi f \rangle & \langle g_{t} | g_{t} \rangle & \langle g_{t} | g_{t_{1}} \rangle & \dots & \langle g_{t} | g_{t_{N}} \rangle \\ \langle g_{t_{1}} | \phi f \rangle & \langle g_{t_{1}} | g_{t} \rangle & \langle g_{t_{1}} | g_{t_{1}} \rangle & \dots & \langle g_{t_{1}} | g_{t_{N}} \rangle \\ \dots & \dots & \dots & \dots & \dots \\ \langle g_{t_{N}} | \phi f \rangle & \langle g_{t_{N}} | g_{t} \rangle & \langle g_{t_{N}} | g_{t_{1}} \rangle & \dots & \langle g_{t_{N}} | g_{t_{N}} \rangle \end{pmatrix}$$

inner product:
$$\langle g | h \rangle \equiv \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \frac{dz}{z} \ \overline{g}(z) h(z)$$

$$g_t(z) \equiv \frac{1}{1 - \overline{z}(t) z}$$

$$\langle g_t | \phi f \rangle \equiv \phi(z, q_0^2) f(z) \qquad \langle g_t | g_{t_m} \rangle = \frac{1}{1 - \overline{z}(t_m) z(t)}$$

 $t_1, t_2, ..., t_N$ are the N values of the squared 4-momentum transfer where the form factor f has been computed on the lattice and t is its value where we want to extrapolate/interpolate f(t)

unitarity bound:
$$\langle \phi f | \phi f \rangle = \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \frac{dz}{z} |\phi(z, q_0^2) f(z)|^2 \le \chi(q_0^2)$$

in the case of interest $z_i \equiv z(t_i)$ and $\phi_i f_i \equiv \phi(z_i, q_0^2) f(t_i)$ are real numbers and the positivity of the inner product implies:

$$\det[\overline{\mathcal{M}}] = \begin{vmatrix} \chi(q_0^2) & \phi f & \phi_1 f_1 & \dots & \phi_N f_N \\ \phi f & \frac{1}{1 - z^2} & \frac{1}{1 - z z_1} & \dots & \frac{1}{1 - z z_N} \\ \phi_1 f_1 & \frac{1}{1 - z_1 z} & \frac{1}{1 - z_1^2} & \dots & \frac{1}{1 - z_1 z_N} \\ \vdots & \vdots & \vdots & \vdots \\ \phi_N f_N & \frac{1}{1 - z_N z} & \frac{1}{1 - z_N z_1} & \dots & \frac{1}{1 - z_N^2} \end{vmatrix} \ge 0$$

* the explicit solution is *a band of values*: $\beta - \sqrt{\gamma} \le f(z) \le \beta + \sqrt{\gamma}$

$$\beta = \frac{1}{d(z)\phi(z)} \sum_{j=1}^{N} f_j \phi_j d_j \frac{1 - z_j^2}{z - z_j}$$

$$\gamma = \frac{1}{d^2(z)\phi^2(z)} \frac{1}{1 - z^2} \left[\chi - \sum_{i,j=1}^{N} f_i f_j \phi_i \phi_j d_i d_j \frac{(1 - z_i^2)(1 - z_j^2)}{1 - z_i z_j} \right]$$

 χ, f_i : nonperturbative input quantities,

 $\phi(z), d(z), \phi_i, d_i$: kinematical coefficients depending on z and z_i

* unitarity is satisfied when $\gamma \ge 0$, which implies: $\chi \ge \chi_{\{f\}}^{DM} \equiv \sum_{i,j=1}^{N} f_i f_j \phi_i \phi_j d_i d_j \frac{(1-z_i^2)(1-z_j^2)}{1-z_i z_j}$

*** select only events with $\chi \ge \chi_{\{f\}}^{DM}$ ***

LQCD data do not have unitarity built-in because of uncertainties

- * important feature: when $z \to z_j$ one has $\beta \to f_j$ and $\gamma \to 0$, i.e. the DM band collapses to f_j for $z = z_j$ for any given set of input data the DM approach reproduces exactly the known data and it allows to extrapolate the form factor in the whole kinematical range in a parameterization-independent way providing a band of values representing the results of all possible BGL fits satisfying unitarity and passing through the known points
- * the DM band represents a uniform distribution which is combined with the multivariate distribution of the input data $\{f_j\}$ to generate the final band for the FF f(z)
- * kinematical constraint(s) can be rigorously implemented in the DM approach [2105.02497, 2105.08674, 2109.15248]

nonperturbative determination of the susceptibilities

* lattice QCD simulations of 2-point functions can provide a first-principle determination of the unitarity bounds

$$\chi_{1-}(Q^2) = \frac{1}{4} \int dt \ t^4 \frac{j_1(Qt)}{Qt} C_{1-}(t) \qquad C_{1-}(t) = \frac{1}{3} \sum_{i=1}^{3} \int d^3x \langle 0 | T \left[\overline{b}(x) \gamma_i c(x) \overline{c}(0) \gamma_i b \right] | 0 \rangle$$

t, Q = Euclidean time distance and momentum

 $b \rightarrow c$ transition (arXiv:2105.07851)

channel	nonPT	with GS subtr.	NNLO PT	with GS subtr.
0+ [10-3]	7.58 (59)		6.204 (81)	
1- [10-4 GeV-2]	6.72 (41)	5.88 (44)	6.486 (48)	5.131 (48)
0- [10-2]	2.58 (17)	2.19 (19)	2.41	1.94
1+ [10-4 GeV-2]	4.69 (30)		3.894	

GS = ground state

<u>perturbative</u>
Bigi et al. PRD '16, PLB '17, JHEP '17

differences with NNLO PT $\sim 4\%$ for 1-, $\sim 7\%$ for 0-, ~ 20 % for 0+ and 1+

 $c \rightarrow s$ transition (arXiv:2105.02497)

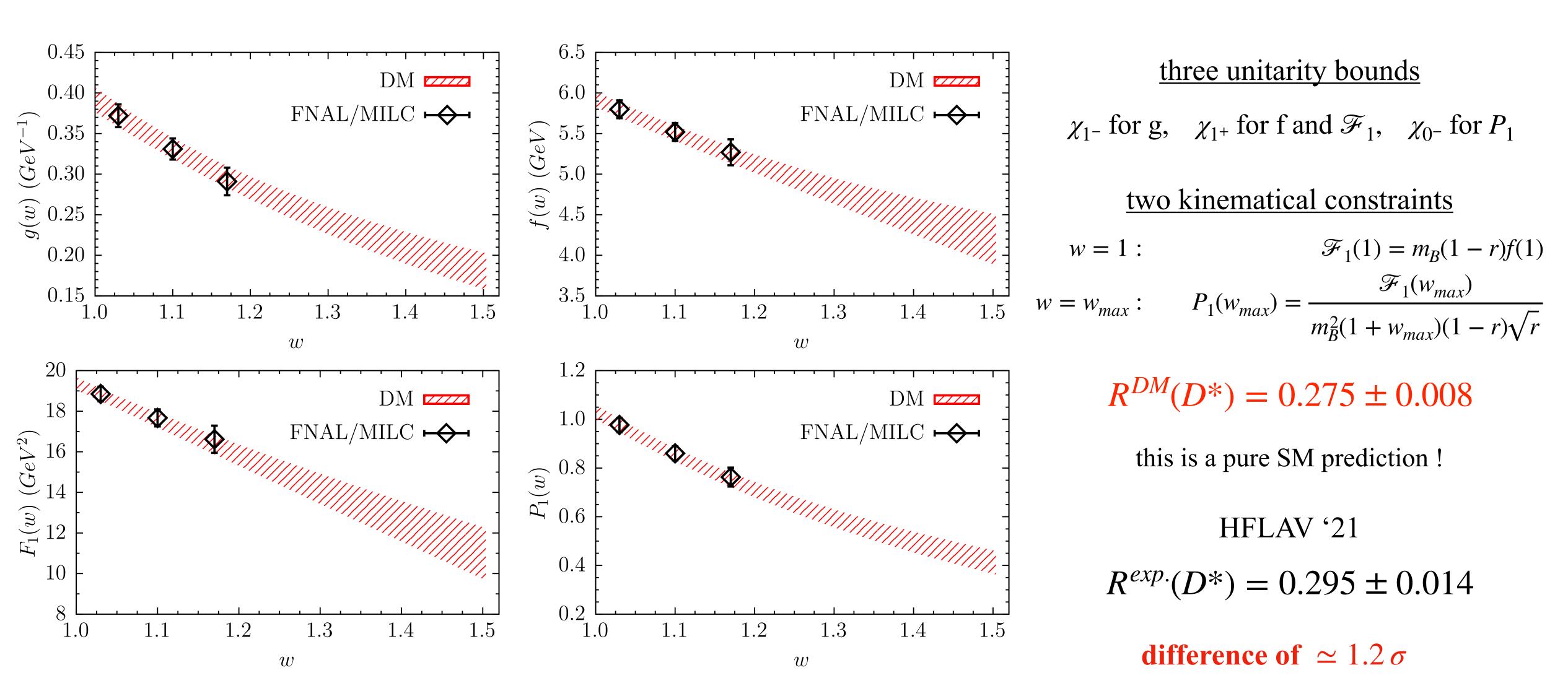
channel	nonPT	with GS subtr.	
0+ [10-2]	0.929 (64)	0.433 (133)	
1- [10-3 GeV-2]	7.88 (41)	4.19 (36)	
0- [10-2]	2.48 (15)	0.942 (91)	
1+ [10-3 GeV-2]	4.89 (29)	3.74 (56)	

 $b \rightarrow d$ transition (arXiv:2202.10285)

channel	nonPT	with GS subtr.	
0+ [10-2]	2.04 (20)		
1- [10-4 GeV-2]	4.88 (1.16)	4.45 (1.16)	
0- [10-2]	2.34 (13)		
1+ [10-4 GeV-2]	4.65 (1.02)		

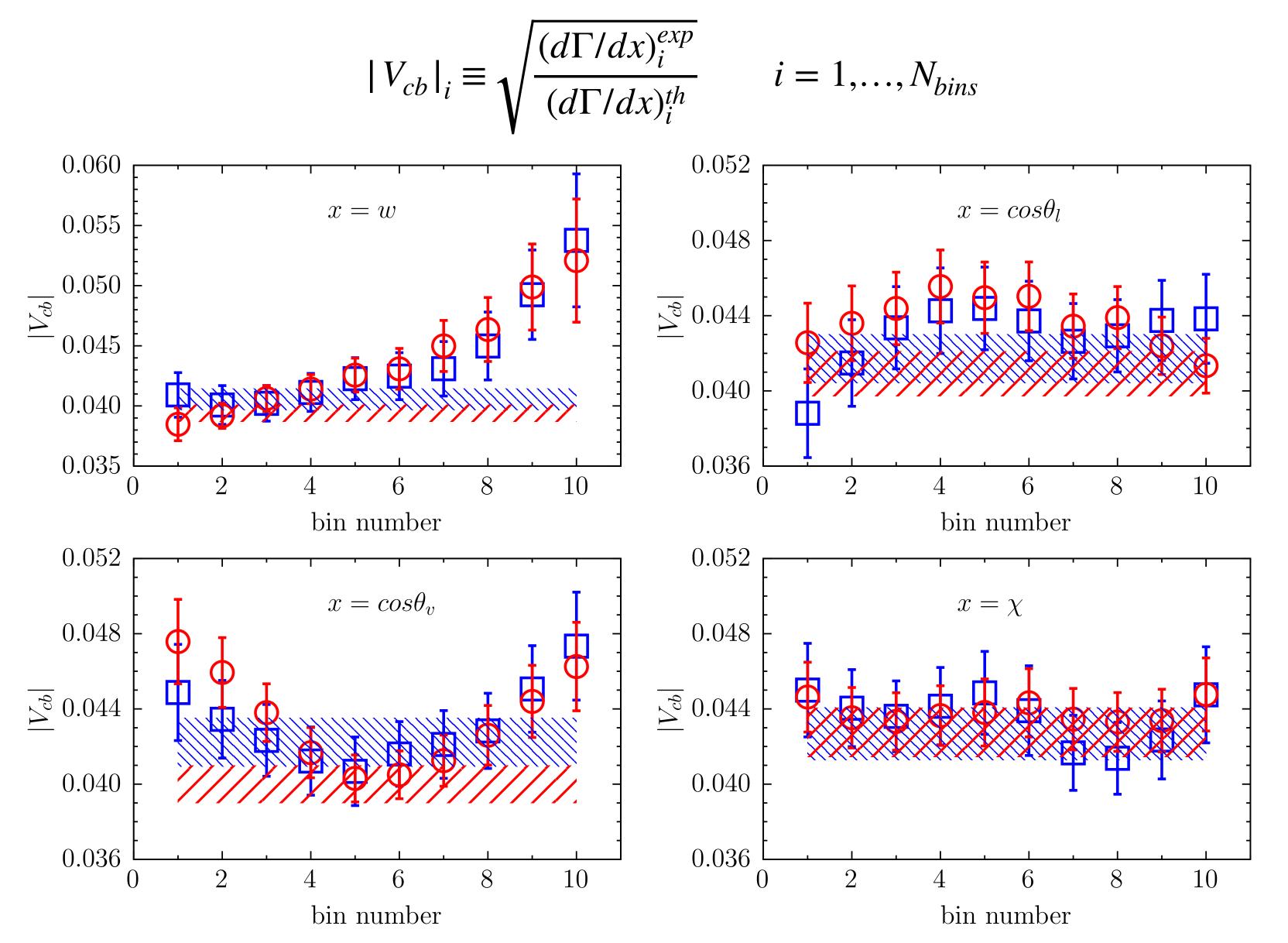
form factors for $B \to D^* \ell \nu_{\ell}$ decays

- * lattice QCD form factors from FNAL/MILC arXiv:2105.14019: synthetic data points at 3 (small) values of the recoil w
- * nonperturbative susceptibilities from arXiv:2105.07851 (resonances from Bigi et al., arXiv:1707.09509)



[arXiv:2109.15248]

*** we do not mix theoretical calculations with experimental data to describe the shape of the FFs ***



four different differential decay rates $d\Gamma/dx$ where $x = \{w, \cos\theta_v, \cos\theta_\ell, \chi\}$:

- 10 bins for each variable
- total of 80 data points

blue data: Belle 1702.01521

red data: Belle 1809.03290

bands are (correlated) weighted averages

$$|V_{cb}| = \frac{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij} |V_{cb}|_j}{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij}} ,$$

$$\sigma_{|V_{cb}|}^2 = \frac{1}{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij}} ,$$

D 11	1 7 0 0	01 501	
Belle	1'/0'2	2.01521	

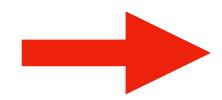
Belle 1809.03290

experiment	$V_{cb} (x=w)$	$ V_{cb} (x=\cos\theta_l)$	$ V_{cb} (x = \cos\theta_v)$	$ V_{cb} (x=\chi)$
Ref. [15]	0.0405 (9)	0.0417 (13)	0.0422 (13)	0.0427 (14)
$\chi^2/(\text{d.o.f.})$	1.01	0.89	0.66	0.72
Ref. [16]	0.0394 (7)	0.0409 (12)	0.0400 (10)	0.0427 (13)
$\chi^2/(\text{d.o.f.})$	1.21	1.36	1.99	0.38

averaging procedure

$$\mu_x = \frac{1}{N} \sum_{k=1}^{N} x_k ,$$

$$\sigma_x^2 = \frac{1}{N} \sum_{k=1}^{N} \sigma_k^2 + \frac{1}{N} \sum_{k=1}^{N} (x_k - \mu_x)^2 ,$$



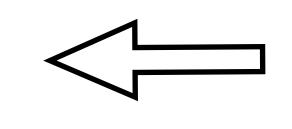
$$|V_{cb}|_{excl} \cdot 10^3 = 41.3 \pm 1.7$$

$$|V_{cb}|_{incl.} \cdot 10^3 = 42.16 \pm 0.50$$
 (Bordone et al: arXiv:2107.00604)

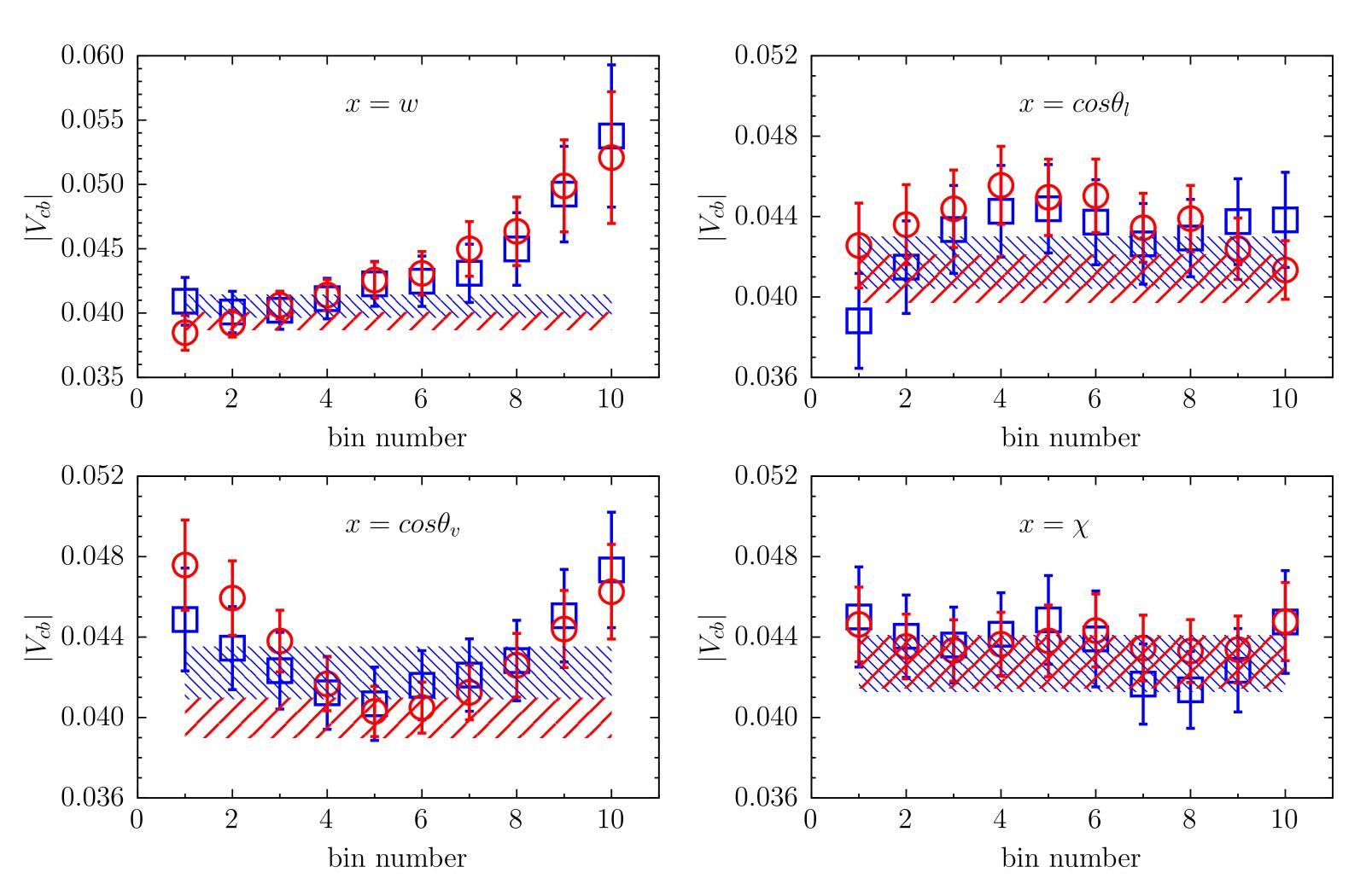
$$|V_{cb}|_{incl.} \cdot 10^3 = 41.69 \pm 0.63$$
 (Bernlochner et al: arXiv:2205.10274)

exclusive/inclusive tension reduced to less than 1σ

the use of exp. data to constrain the shape of the FFs leads to smaller errors, but it produces a bias on the extracted value of $|V_{cb}|$ since the experimental and theoretical (FNAL/MILC) slopes differ



$$|V_{cb}|_{excl.} \cdot 10^3 = 39.6^{+1.1}_{-1.0}$$
 Gambino et al., arXiv:1905.08209
 $|V_{cb}|_{excl.} \cdot 10^3 = 39.56^{+1.04}_{-1.06}$ Jaiswal et al., arXiv:2002.05726
 $|V_{cb}|_{excl.} \cdot 10^3 = 38.86 \pm 0.88$ FLAG '21, arXiv:2111.09849



Remark 1

The value of $|V_{cb}|$ exhibits some dependence on the specific w-bin. The value obtained adopting a constant fit is dominated by the bins at small values of the recoil w, where direct lattice data are available and the length of the momentum extrapolation is limited.

Remark 2

The value of $|V_{cb}|$ deviates from a constant fit for $x = \cos(\theta_v)$. If we try a quadratic fit of the form

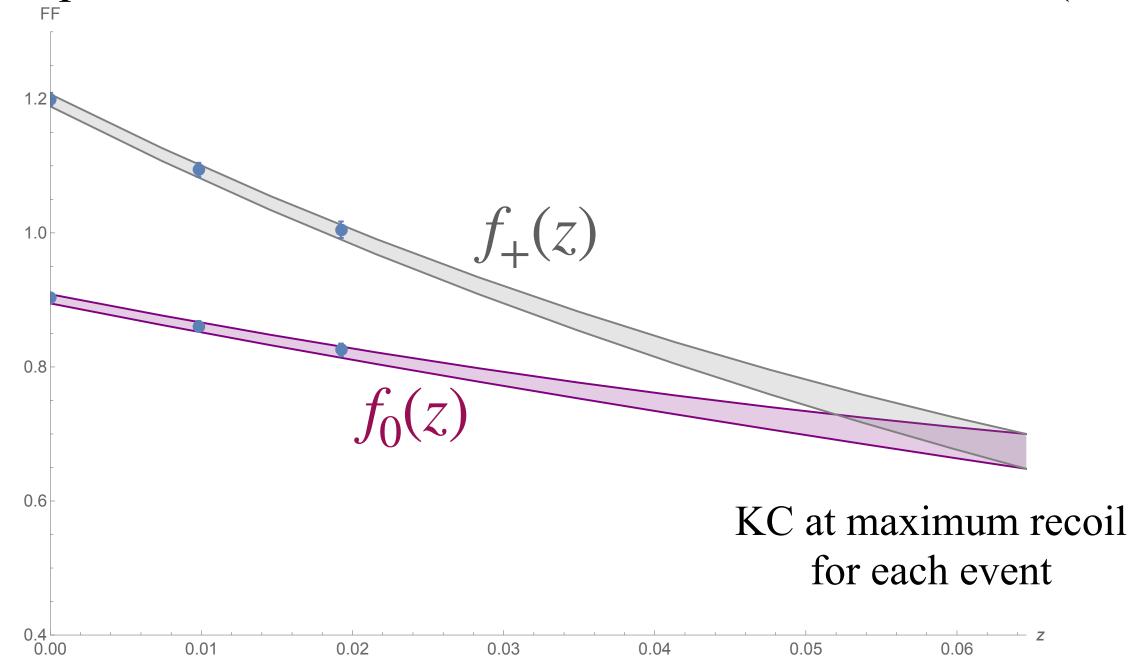
$$|V_{cb}| \left[1 + \delta B \cos^2(\theta_v)\right]$$

we get $\delta B \neq 0$ (2-3 σ level) and $|V_{cb}|$ more consistent between the two sets of Belle data, but still in agreement with the value of $|V_{cb}|$ obtained with a constant fit

Both remarks appear to be related to a different w-slope of the theoretical FFs based on the lattice results from FNAL/MILC with respect to the Belle experimental data. This crucial issue (a kind of *slope puzzle*) needs to be further investigated by forthcoming calculations of the FFs at non-zero recoil expected from the JLQCD Collaboration as well as by future improvements of the precision of the experimental data.

extraction of $|V_{cb}|$ from $B \to D\ell\nu_{\ell}$ decays

- * lattice QCD form factors from FNAL/MILC (arXiv:1503.07237): synthetic data points at 3 (small) values of the recoil
- * experimental data from Belle collaboration in 10 bins (arXiv:1510.03657)

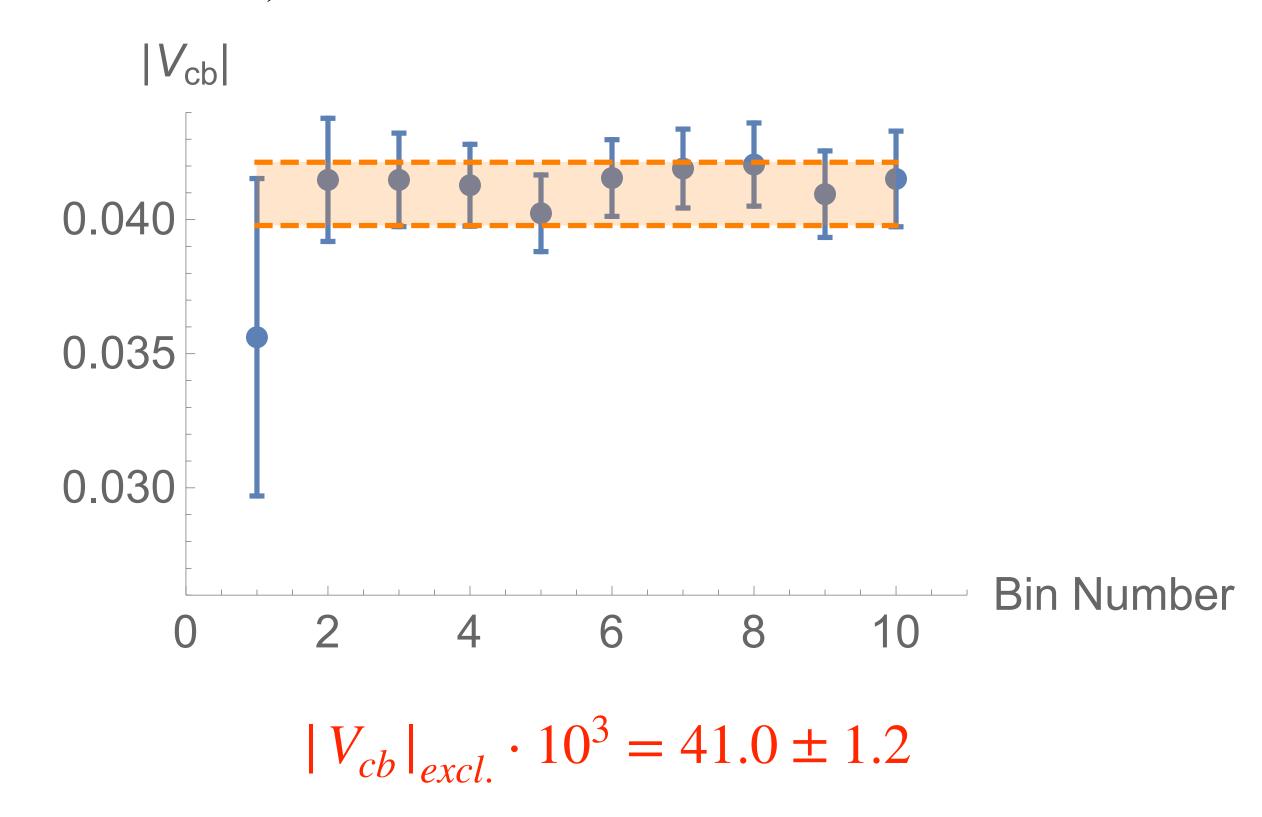


$$R^{DM}(D) = 0.296 \pm 0.008$$

again a pure SM prediction!

HFLAV '21
$$R^{exp.}(D) = 0.339 \pm 0.030$$

difference of $\simeq 1.4 \sigma$



nice consistency with $|V_{cb}|$ from $B \to D^*$

$$|V_{cb}|_{excl.} \cdot 10^3 = 40.49 \pm 0.97$$

 $|V_{cb}|_{excl.} \cdot 10^3 = 41.0 \pm 1.1$
 $|V_{cb}|_{excl.} \cdot 10^3 = 40.0 \pm 1.0$

Gambino et al., arXiv:1606.08030 Jaiswal et al., arXiv:1707.09977 FLAG '21, arXiv:2111.09849

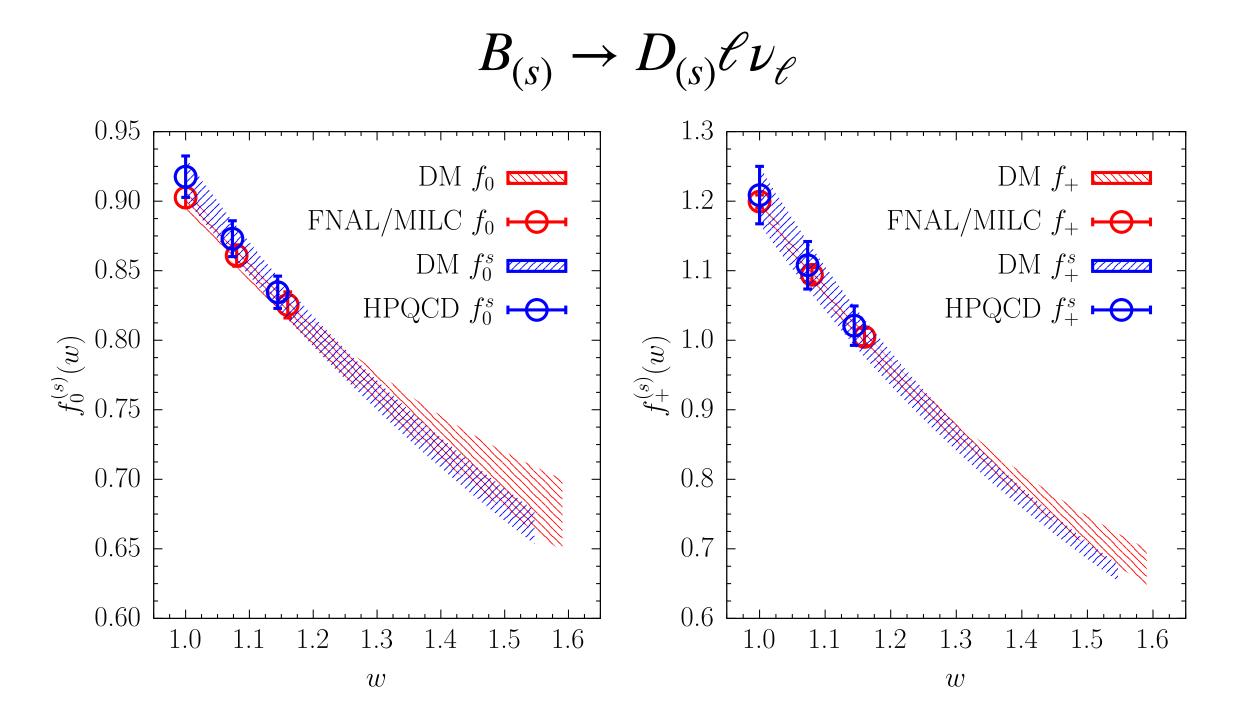
extraction of $|V_{cb}|$ from $B_s \to D_s^{(*)} \ell \nu_{\ell}$ decays

- * LQCD form factors from **HPQCD** arXiv:1906.00701($B_s \rightarrow D_s$) and arXiv:2105.11433 ($B_s \rightarrow D_s^*$)
- * two sets of experimental data from LHCb collaboration: arXiv:2001.03225 and arXiv:2003.08453

details in the backup slides	$\rightarrow D_{(s)}^{(*)} \mathscr{C} \nu_{\mathscr{C}}$	$ V_{cb} ^{\mathrm{DM}}$ from $B_{(s)} \rightarrow$	summary of	
[FLAG 21]	excl.	incl. [2107.00604]	$ V_{cb} ^{\mathrm{DM}} \cdot 10^3$	decay
			41.0 ± 1.2	$B \to D$
nice consistency of $ V_{cb} ^{DM}$			41.3 ± 1.7	$B o D^*$
among the four channels			41.7 ± 1.9	$B_{\scriptscriptstyle S} o D_{\scriptscriptstyle S}$
			40.7 ± 2.4	$B_{\scriptscriptstyle S} o D_{\scriptscriptstyle S}^*$
$68 \ (\simeq 1.8\sigma)$	39.36 ± 0.0	$42.16 \pm 0.50 \ (\simeq 1.0\sigma)$	41.2 ± 0.8	average

summary of $R(D_{(s)}^{(*)})$ and polarization observables

observable	DM	ob	servable	DM	experiment	difference
$R(D_{s})$	0.298(5)		R(D)	0.296(8)	0.339(27)(14)	$\simeq 1.4 \sigma$
$R(D_{\scriptscriptstyle S}^{m{st}})$	0.250(6)	—	$R(D^*)$	0.275(8)	0.295 (10) (10)	$\simeq 1.2 \sigma$
$P_{ au}(D_{\scriptscriptstyle S}^{st})$	-0.520(12)	SU(3) _F breaking?	$P_{\tau}\!(D^*)$	-0.52(1)	$-0.38(51)(^{+21}_{-16})$	
$F_L(D_s^*)$	0.440(16)		$F_L(D^*)$	0.42(1)	0.60(8)(4)	$\simeq 2.0 \sigma$



red: u/d spectator quark

blue: strange spectator quark

$B_{(s)} \to D^*_{(s)} \ell \nu_{\ell}$ $\begin{array}{c|c} \operatorname{DM} g & & \\ \operatorname{FNAL/MILC} g & & \\ \operatorname{DM} g^s & & \\ \operatorname{HPQCD} g^s & & \\ \end{array}$ FNAL/MILC f0.40 $\begin{array}{c|c} DM & f^s \\ HPQCD & f^s \end{array}$ $\widehat{7}$ 0.35 $f^{(s)}(m) (geV)$ 5.5 4.5 $(G_{eV}^{O})^{O} = 0.30$ $(m)^{(s)} 0.25$ 0.204.0 1.2 1.4 $\begin{array}{c|c} \operatorname{DM} \mathcal{F}_1 & & \\ \operatorname{FNAL/MILC} \mathcal{F}_1 & & \\ \operatorname{DM} \mathcal{F}_1^s & & \\ \operatorname{HPQCD} \mathcal{F}_1^s & & \\ \end{array}$ $DM P_1$ 1.0 FNAL/MILC P_1 $\begin{array}{c|c} \operatorname{DM} P_1^s \\ \operatorname{HPQCD} P_1^s \end{array}$ 0.9 $\begin{array}{c} \mathcal{F}_{1}^{(s)}(w) & (GeV^{2}) \\ 91 & 91 \end{array}$ $\begin{array}{c} P_1^{(s)}(w) \\ \hline 0.7 \end{array}$ 0.50.41.5 1.0 1.1 1.2 1.4 1.0 1.5

ratios of branching ratios

$$\frac{\mathcal{B}(B_s \to D_s \mu \nu_\mu)}{\mathcal{B}(B \to D \mu \nu_\mu)} \Big|_{\text{LHCb}} = 1.09 \pm 0.09 \qquad \frac{\mathcal{B}(B_s \to D_s \mu \nu_\mu)}{\mathcal{B}(B \to D \mu \nu_\mu)} \Big|_{\text{DM}} = 1.02 \pm 0.06$$

$$\frac{\mathcal{B}(B_s \to D_s^* \mu \nu_\mu)}{\mathcal{B}(B \to D^* \mu \nu_\mu)} \Big|_{\text{LHCb}} = 1.06 \pm 0.10 \qquad \frac{\mathcal{B}(B_s \to D_s^* \mu \nu_\mu)}{\mathcal{B}(B \to D^* \mu \nu_\mu)} \Big|_{\text{DM}} = 1.19 \pm 0.11$$

- no SU(3)_F breaking effects in $B_{(s)} \rightarrow PS$
- some SU(3)_F breaking effects in $B_{(s)} \rightarrow V$

need of more precise exp. and theo. data

DM bands for the form factors of the $B \to \pi \ell \nu_\ell$ decays

* lattice QCD form factors from **RBC/UKQCD** (arXiv:1501.05363) and **FNAL/MILC** (arXiv:1503.07839): synthetic data points at 3 (large) values of q² (19.0, 22.6, 25.1 GeV²) and their combination

* nonperturbative susceptibilities



red dots: RBC/UKQCD blue squares: FNAL/MILC

	$f(q^2=0)$
RBC/UKQCD	-0.06 ± 0.25
FNAL/MILC	-0.01 ± 0.16
combined	-0.04 ± 0.22
LCSR	0.28 ± 0.03

arXiv:2102.07233

combined RBC/UKQCD + FNAL/MILC

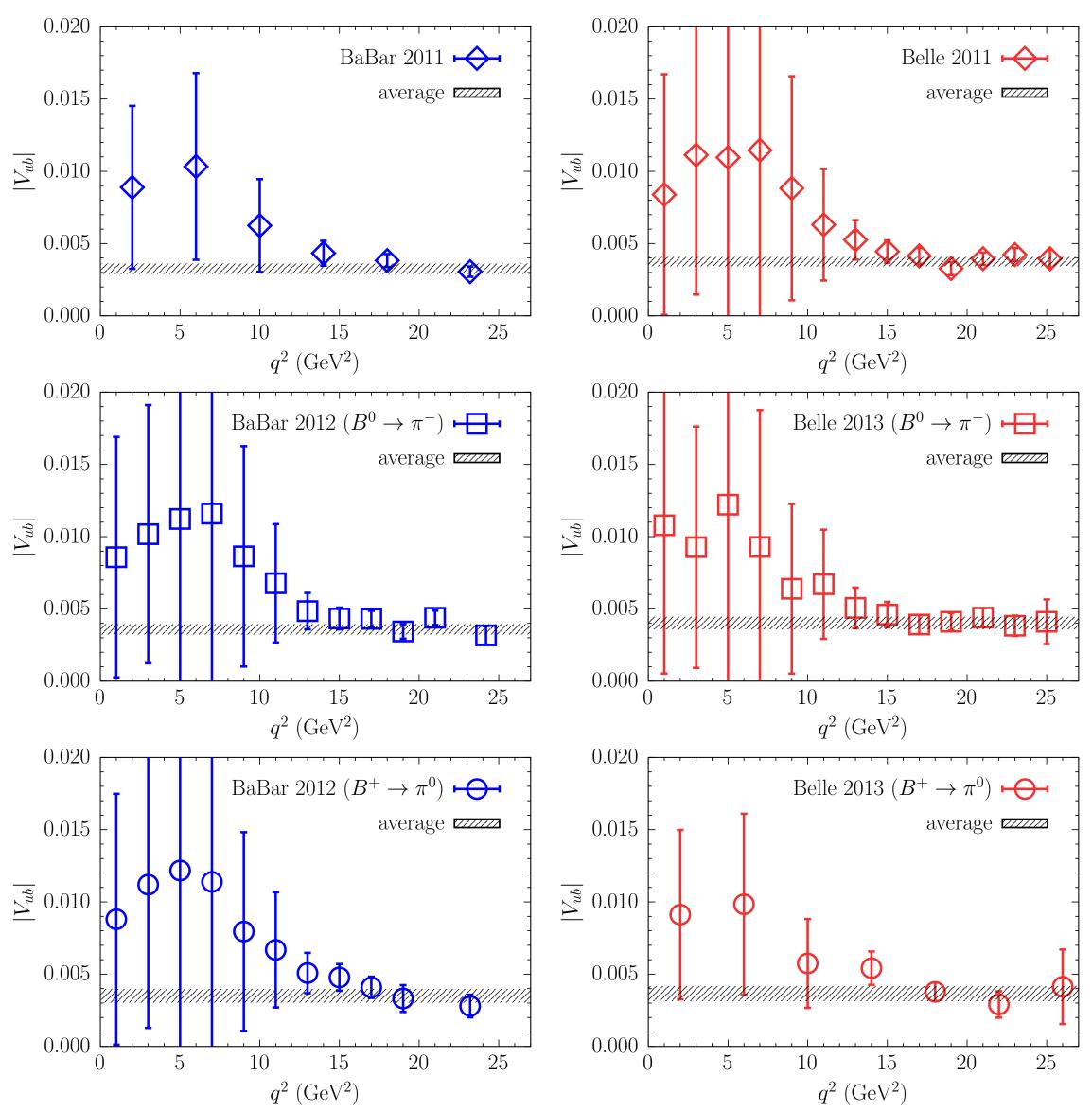
$$\mu_x = \frac{1}{N} \sum_{k=1}^{N} x_k,$$

$$\sigma_x^2 = \frac{1}{N} \sum_{k=1}^{N} \sigma_k^2 + \frac{1}{N} \sum_{k=1}^{N} (x_k - \mu_x)^2.$$

extraction of $|V_{ub}|$ from $B \to \pi \ell \nu_{\ell}$ decays

* six sets of data from Belle and BaBar collaborations:

BaBar 2011, Belle 2011, BaBar 2012 ($B^0 \to \pi^-$), BaBar 2012 ($B^+ \to \pi^0$), Belle 2013 ($B^0 \to \pi^-$), Belle 2013 ($B^+ \to \pi^0$)



$$|V_{ub}|_{j} \equiv \sqrt{\frac{(d\Gamma/dq^{2})_{j}^{exp}}{(d\Gamma/dq^{2})_{j}^{th}}} \qquad j = 1, \dots, N_{bins}$$

bands are (correlated) weighted averages

$$|V_{ub}|_n = \frac{\sum_{i,j} (\mathbf{C}^{-1})_{ij} |V_{ub}|_j}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}, \qquad \sigma^2_{|V_{ub}|_n} = \frac{1}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}},$$

after averaging over the six exp.'s

input LQCD data	$ V_{ub} ^{DM} \times 10^3$		
RBC/UKQCD	3.52 (49)		
FNAL/MILC	3.76 (41)		
combined	3.62 (47)		
exclusive (FLAG '21)	3.74 (17)		
inclusive (PDG '22)	4.13 (26)		

extraction of $|V_{ub}|$ from $B_s \to K\ell\nu_{\ell}$ decays

* LQCD form factors from HPQCD (1406.2279), RBC/UKQCD (1501.05373) and FNAL/MILC (1901.02561)

* two q²-bins of experimental data from LHCb collaboration (2012.05143): $q^2 \le 7$ GeV² and $q^2 \ge 7$ GeV²

after averaging over the two q²-bins

input LQCD data	$ V_{ub} ^{DM} \times 10^3$
RBC/UKQCD	3.93 (46)
FNAL/MILC	3.93 (35)
HPQCD	3.54 (35)
combined	3.77 (48)
inclusive (PDG '22)	4.13 (26)

* improved extraction of $|V_{ub}|$ from $B \to \pi \ell \nu_{\ell}$ (unitarization of exp. data): $|V_{ub}|^{DM} \cdot 10^3 = 3.88$ (32) [arXiv:2203.16213]

***** average of $|V_{ub}|$ from $B_{(s)} \to \pi(K) \ell \nu_{\ell}$: $|V_{ub}|^{DM} \cdot 10^3 = 3.85$ (27) *****

[paper in preparation]

difference of $\sim 0.7\sigma$ with the incl. PDG value

Conclusions

- * the Dispersion Matrix approach is an attractive tool to implement unitarity and lattice QCD calculations in the analysis of exclusive semileptonic decays of hadrons. The main features are:
 - it does not rely on any assumption about the momentum dependence of the hadronic form factors
 - it can be based entirely on first principles using lattice determinations both of the relevant form factors and of the dispersive bounds (the susceptibilities) from appropriate 2-point and 3-point (Euclidean) correlation functions
 - it allows to implement unitarity and kinematical constraints in a rigorous and parameterization-independent way
 - it predicts band of values that are equivalent to the infinite number of BGL fits satisfying unitarity and KCs and reproducing exactly a given set of data points
 - it can be applied to any exclusive semileptonic decay of hadrons

* results for $B_{(s)} \to D_{(s)}^{(*)} \ell \nu_{\ell}$ decays: extraction of $|V_{cb}|$ and theoretical determination of $R(D_{(s)}^{(*)})$

decay	$ V_{cb} ^{\mathrm{DM}} \cdot 10^3$	incl. [2107.00604]	excl. [FLAG 21]	observable	DM	experiment	difference
$B \to D$	41.0 ± 1.2			R(D)	0.296(8)	0.340(27)(13)	$\simeq 1.4 \sigma$
$B \to D^*$	41.3 ± 1.7			$R(D^*)$	0.275(8)	0.295 (11) (8)	$\simeq 1.3 \sigma$
$B_{\scriptscriptstyle S} o D_{\scriptscriptstyle S}$	41.7 ± 1.9			$R(D_{\rm s})$	0.298(5)		
$B_{\scriptscriptstyle S} \to D_{\scriptscriptstyle S}^*$	40.7 ± 2.4			$R(D_{\mathfrak{s}}^*)$	0.250(6)		
average	41.2 ± 0.8	$42.16 \pm 0.50 \ (\simeq 1.0\sigma)$	$39.36 \pm 0.68 \ (\simeq 1.8\sigma)$	` J /			

* extraction of $|V_{ub}|$ from $B_{(s)} \to \pi(K)\ell\nu_{\ell}$ decays:

decay
$$|V_{ub}|^{\text{DM}} \cdot 10^3$$

 $B \to \pi$ 3.88 ± 0.32
 $B_s \to K$ 3.77 ± 0.48

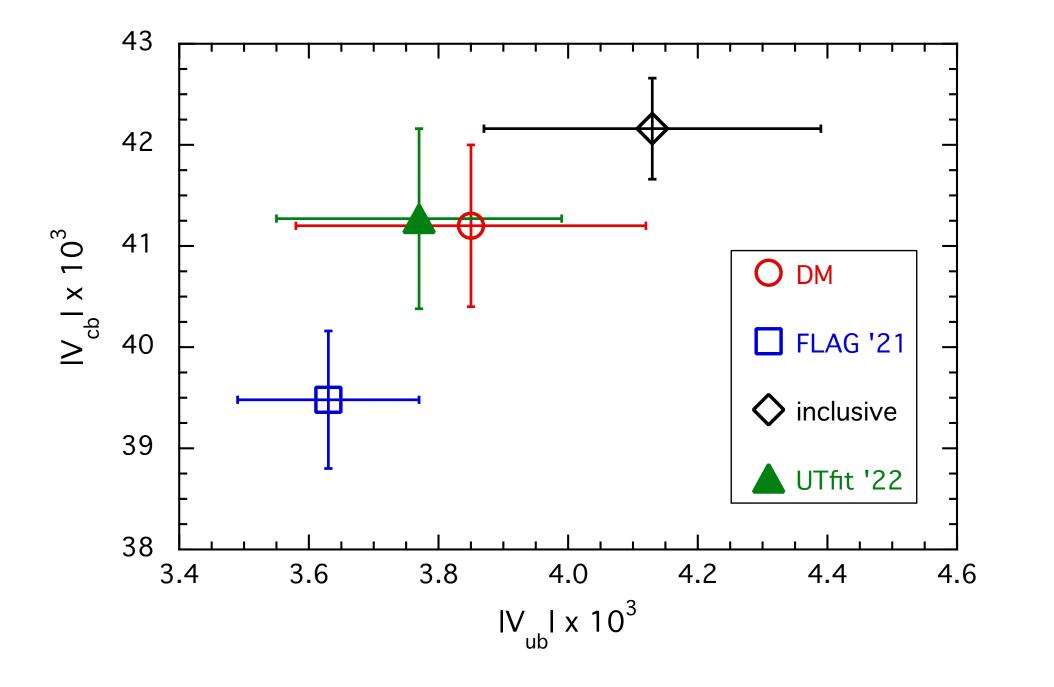
 3.85 ± 0.27

 $4.13 \pm 0.26 \ (\sim 0.7\sigma)$

incl. [PDG 22]

 $3.63 \pm 0.14 \ (\sim 0.7\sigma)$

excl. [FLAG 21]



	decays	DM	FLAG '21	inclusive	UTfit '22
V _{cb} •10 ³	$B_{(s)} \rightarrow D_{(s)}^{(*)}$	41.2 (8)	39.48 (68)	42.16 (50)	41.27 (89)
V _{ub} •10 ³	$B_{(s)} \rightarrow \pi(K)$	3.85 (27)	3.63 (14)	4.13 (26)	3.77 (22)

UTfit → CP violation and rare decays measurements into a global UT fit

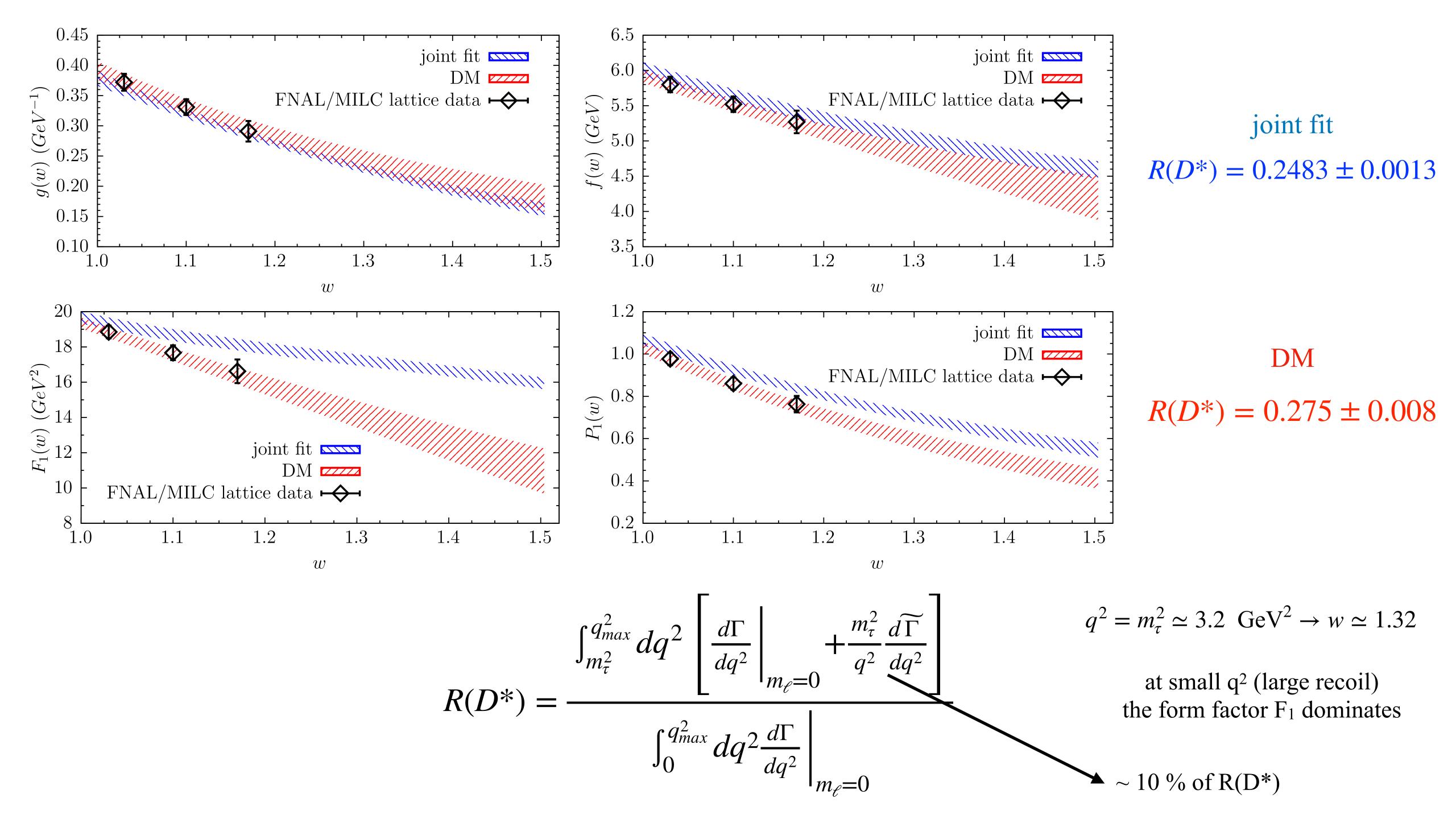
reduced tensions in $|V_{cb}|$, $|V_{ub}|$

	[
	0.32 –		4
	-		1
	0.30		4
	-	HFLAV (B; exp.)	-
(s) ₍	0.28 –		
$R(D(s)^*)$	0.20	DM (B)	-
		68.3 % C.L. contours	s -
	0.26		_
	Ł	$DM(B_s)$ (T) HFLAV $(B; SM)$	}
	0.24		4
	<u> </u>		
	0.24	0.28 0.32 0.36 0.40	0.44
		R(D(s))	

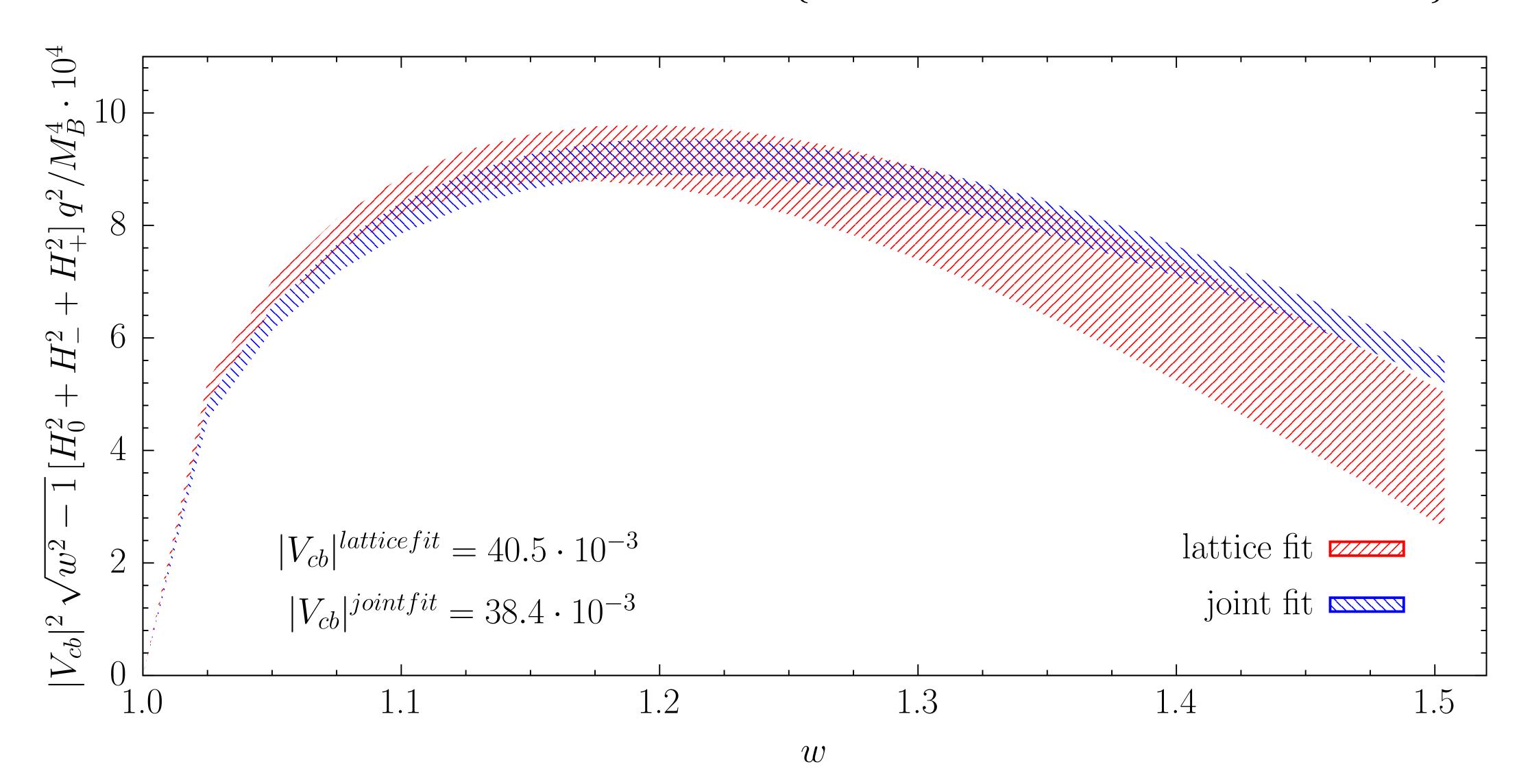
	DM	HFLAV '21 (exp.)	HFLAV '21 (SM)
R(D)	0.296 (8)	0.339 (26) (14)	0.299 (3)
$R(D^*)$	0.275 (8)	0.295 (10) (10)	0.254 (5)
$R(D_s)$	0.298 (5)		
$R(D_s^*)$	0.250 (6)		

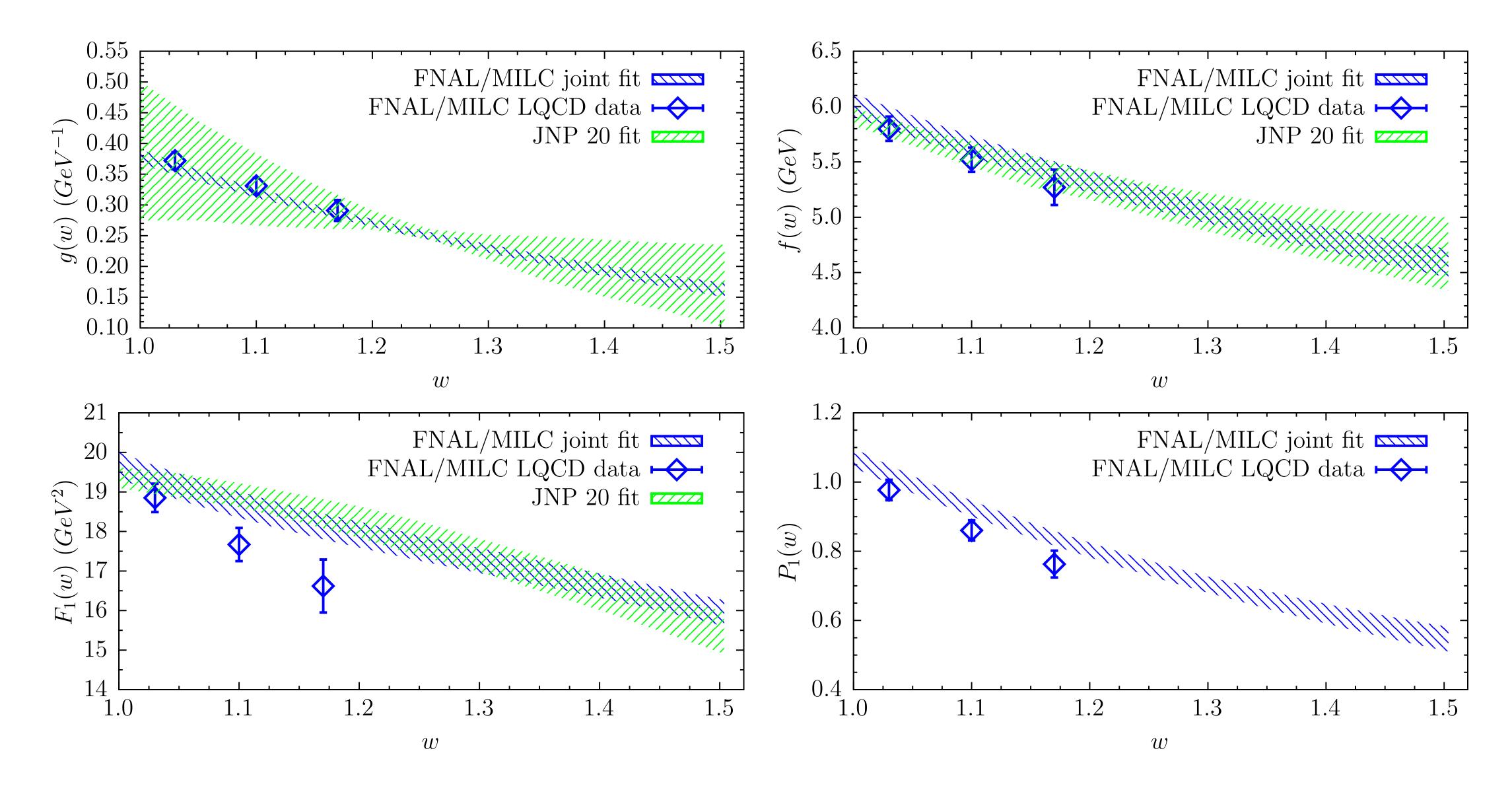
reduced tension in $R(D^*)$ (using the FNAL ff's)

backup slides



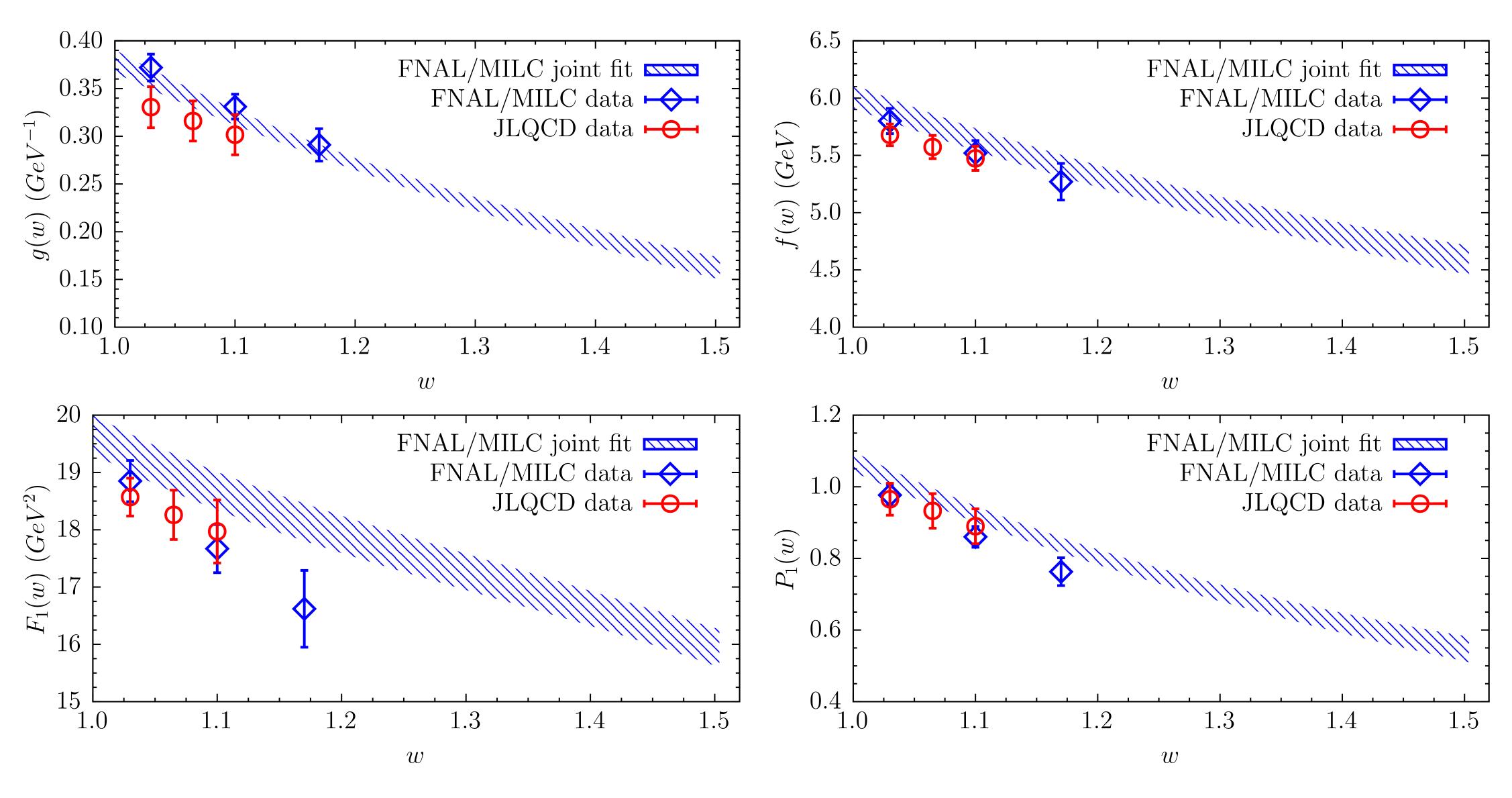
$$\frac{d\Gamma}{dw} \propto |V_{cb}|^2 \sqrt{w^2 - 1} \frac{q^2}{M_B^4} \left[H_0^2(w) + H_-^2(w) + H_+^2(w) \right] = |V_{cb}|^2 \sqrt{w^2 - 1} \left\{ \left(\frac{\mathcal{F}_1(w)}{M_B^2} \right)^2 + 2 \frac{q^2}{M_B^2} \left[\left(\frac{f(w)}{M_B} \right)^2 + r^2(w^2 - 1) \, m_B^2 \, g^2(w) \right] \right\} \qquad m_\ell = 0$$





FNAL/MILC joint fit (arXiv:2105.14019) uses Belle+BaBar data and new FNAL/MILC LQCD points

JNP 20 fit (Jaiswal et al. JHEP '20) uses Belle data + old FNAL/MILC LQCD point $h_{A_1}(1)$



FNAL/MILC data from arXiv:2105.14019

JLQCD data from slides of T. Kaneko at CKM '21

FNAL/MILC fit to lattice points (arXiv:2105.14019)

TABLE XI. Results of linear, quadratic, and unitarity-constrained cubic z expansions using only lattice-QCD data.

	Linear	Quadratic	Cubic
$\overline{a_0}$	0.0330(12)	0.0330(12)	0.0330(12)
a_1	-0.157(52)	-0.155(55)	-0.155(55)
a_2		-0.12(98)	-0.12(98)
a_3			-0.004(1.000)
$\overline{b_0}$	0.01229(23)	0.01229(24)	0.01229(23)
b_1	-0.002(10)	-0.003(12)	-0.003(12)
b_2		0.07(53)	0.05(55)
b_3			-0.01(1.00)
c_1	-0.0057(22)	-0.0058(25)	-0.0057(25)
c_2		-0.013(91)	-0.02(10)
c_3		, , ,	0.10(95)
$\overline{d_0}$	0.0508(15)	0.0509(15)	0.0509(15)
d_1	-0.317(59)	-0.327(67)	-0.327(67)
d_2		-0.03(96)	-0.02(96)
d_3			-0.0006(1.0000)
$\frac{1}{\chi^2/\mathrm{dof}}$	0.83/5	0.64/3	0.64/3
$\sum_{i}^{N} a_i^2$	0.026(16)	0.04(24)	0.04(24)
$\sum_{i}^{N} (b_i^2 + c_i^2)$	0.000193(69)		0.01(18)
$\sum_{i=1}^{N} d_i^2$	0.103(37)	0.110(61)	0.110(52)

quadratic fit

$$\sum_{i=1}^{2} a_i^2 = 0.04 \pm 0.24 \quad ???$$

indeed: $a_2 = -0.12 \pm 0.98$ with 1σ one has $|a_2| > 1$!!!

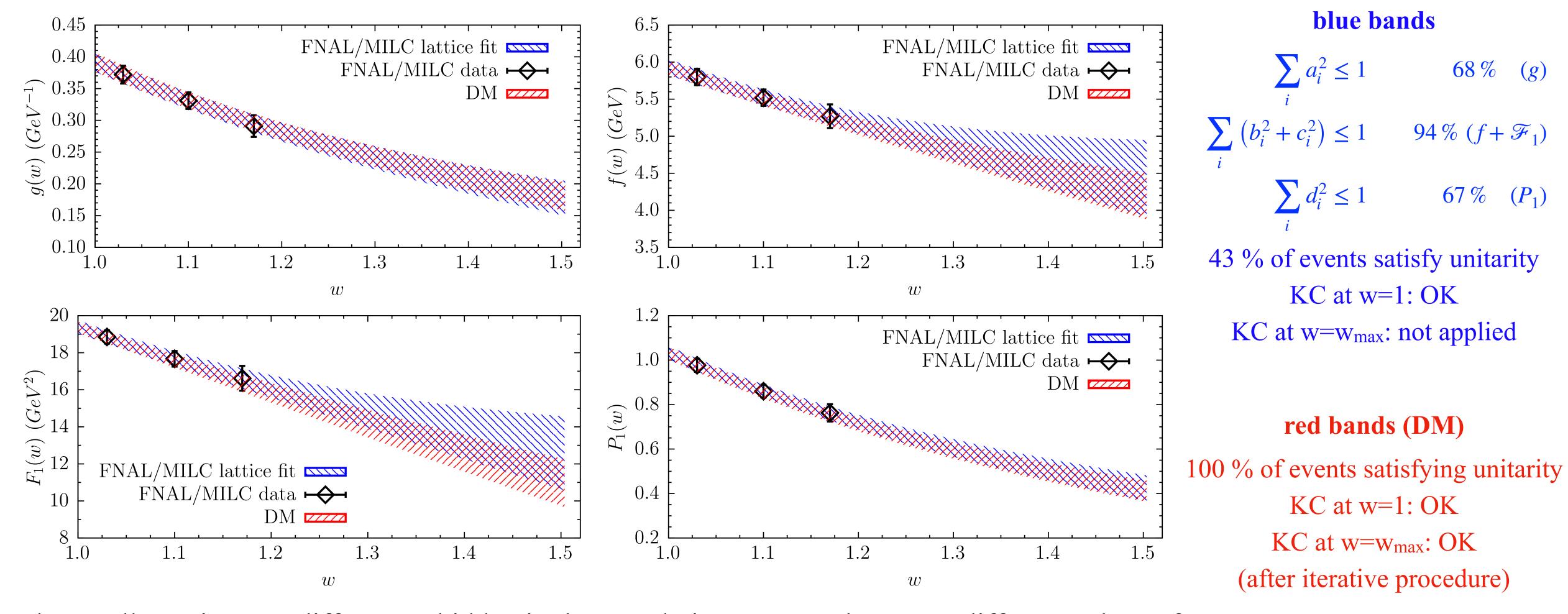
what's going on?

linearization of the error

$$(a_2 + \delta a_2)^2 - a_2^2 \to 2 |a_2| \delta a_2 \approx 0.24$$

wrong when $\delta a_2 > |a_2|$

* comparison with FNAL/MILC "lattice fit" from arXiv:2105.14019 → blue bands: quadratic BGL fit of LQCD points only



* overall consistency, differences hidden in the correlations among the FFs at different values of w

* some differences for $\mathcal{F}_1(w_{max})$: some impact on $R(D^*)$ $R(D^*) = 0.265 \pm 0.013$ $R(D^*) = 0.275 \pm 0.008$

nonperturbative determination of the susceptibilities

* lattice QCD simulations can provide a first-principle determination of the unitarity bounds [arXiv:2105.02497]

time-momentum representation (Q = Euclidean 4-momentum)

2-point Euclidean correlation functions

$$\begin{split} \chi_{0^+}(Q^2) &\equiv \frac{\partial}{\partial Q^2} \left[Q^2 \Pi_{0^+}(Q^2) \right] = \int_0^\infty dt \ t^2 j_0(Qt) \ C_{0^+}(t) \ , \qquad C_{0^+}(t) = \widetilde{Z}_V^2 \ \int d^3 x \langle 0 | T \left[\bar{q}_1(x) \gamma_0 q_2(x) \ \bar{q}_2(0) \gamma_0 q_1(0) \right] | 0 \rangle \ , \\ \chi_{1^-}(Q^2) &\equiv -\frac{1}{2} \frac{\partial^2}{\partial^2 Q^2} \left[Q^2 \Pi_{1^-}(Q^2) \right] = \frac{1}{4} \int_0^\infty dt \ t^4 \frac{j_1(Qt)}{Qt} \ C_{1^-}(t) \ , \qquad C_{1^-}(t) = \widetilde{Z}_V^2 \ \frac{1}{3} \sum_{j=1}^3 \int d^3 x \langle 0 | T \left[\bar{q}_1(x) \gamma_j q_2(x) \ \bar{q}_2(0) \gamma_j q_1(0) \right] | 0 \rangle \ , \\ \chi_{0^-}(Q^2) &\equiv \frac{\partial}{\partial Q^2} \left[Q^2 \Pi_{0^-}(Q^2) \right] = \int_0^\infty dt \ t^2 j_0(Qt) \ C_{0^-}(t) \ , \qquad C_{0^-}(t) = \widetilde{Z}_A^2 \int d^3 x \langle 0 | T \left[\bar{q}_1(x) \gamma_0 \gamma_5 q_2(x) \ \bar{q}_2(0) \gamma_0 \gamma_5 q_1(0) \right] | 0 \rangle \ , \\ \chi_{1^+}(Q^2) &\equiv -\frac{1}{2} \frac{\partial^2}{\partial^2 Q^2} \left[Q^2 \Pi_{1^+}(Q^2) \right] = \frac{1}{4} \int_0^\infty dt \ t^4 \frac{j_1(Qt)}{Qt} \ C_{1^+}(t) \ , \qquad C_{1^+}(t) = \widetilde{Z}_A^2 \ \frac{1}{3} \sum_{i=1}^3 \int d^3 x \langle 0 | T \left[\bar{q}_1(x) \gamma_j \gamma_5 q_2(x) \ \bar{q}_2(0) \gamma_j \gamma_5 q_1(0) \right] | 0 \rangle \ , \end{split}$$

* in arXiv:2105.02497, 2105.07851 and 2202.10285 we have calculated the χ 's for the $c \to s$, $b \to c$ and $b \to u$ transitions at $Q^2 = 0$ using the N_f = 2+1+1 gauge ensembles generated by ETMC

- subtraction of discretization effects evaluated in perturbation theory at order $\mathcal{O}(\alpha_s^0)$

 $b \rightarrow c$

- implementation of WI for the 0⁺ and 0⁻ channels to avoid exactly contact terms
- use of the ETMC ratio method (hep-lat/0909.3187) to reach the physical b-quark point

applicable also at $Q^2 \neq 0$

- start from a set of input data $\{f_i\}$ with a given covariance matrix C_{ij} and a (eventually correlated) susceptibility χ
- generate a multivariate distribution of N_{boot} events
- for each event $k = 1, 2, ..., N_{boot}$ evaluate the lower $f_{lo}^k(t)$ and upper $f_{up}^k(t)$ values of the form factor at a given t

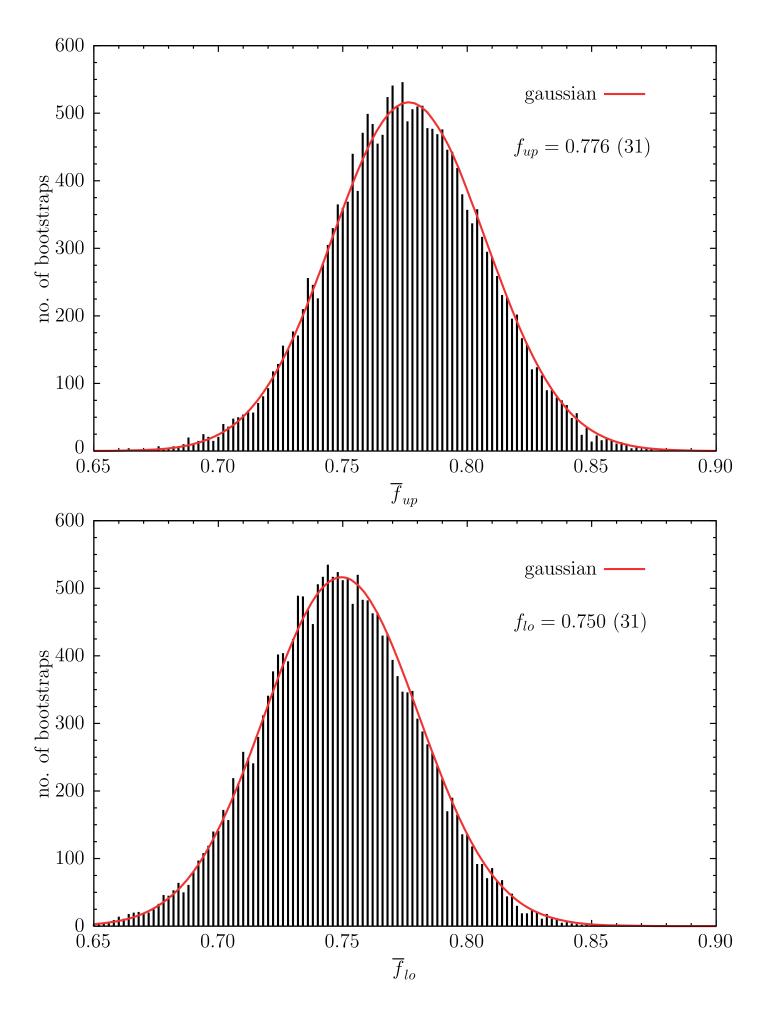


FIG. 1. Histograms of the values of \bar{f}_{up} (upper panel) and \bar{f}_{lo} (lower panel) for the bootstrap events that pass the unitarity filter in the case of the vector form factor $f_+(t=0~{\rm GeV^2})$ of the $D\to K$ transition.

averages:
$$\bar{f}_{lo(up)}(t) = \frac{1}{N_{boot}} \sum_{k=1}^{N_{boot}} f_{lo(up)}^k(t)$$

covariance:
$$C_{L(U),L(U)} \equiv \frac{1}{N_{boot} - 1} \sum_{k=1}^{N_{boot}} \left[f_{lo(up)}^{k}(t) - \bar{f}_{lo(up)}(t) \right] \left[f_{lo(up)}^{k}(t) - \bar{f}_{lo(up)}(t) \right]$$

correlated bivariate:
$$P_{LU}(f_L, f_U) = \frac{\sqrt{\det(C^{-1})}}{2\pi} e^{-\frac{1}{2} \left[C_{LL}^{-1} (f_L - \bar{f}_{lo})^2 + 2C_{LU}^{-1} (f_L - \bar{f}_{lo}) (f_U - \bar{f}_{up}) + C_{UU}^{-1} (f_U - \bar{f}_{up})^2 \right]}$$

uniform distribution:
$$P(f) = \frac{1}{f_U - f_L} \theta(f - f_L) \theta(f_U - f)$$

final average:
$$f(t) \equiv \frac{\bar{f}_{lo}(t) + \bar{f}_{up}(t)}{2}$$

final variance:
$$\sigma_f^2(t) \equiv \frac{1}{12} \left[\bar{f}_{lo}(t) - \bar{f}_{up}(t) \right]^2 + \frac{1}{3} \left[C_{LL}(t) + C_{UU}(t) + C_{LU}(t) \right]$$

* kinematical constraint: $f_{+}(0) = f_{0}(0)$

for each event
$$k = 1, 2, ..., N_{boot}$$
: $f(0)|_{lo} \le f(0) \le f(0)|_{up}$ $f_0(0)|_{lo} = \max(f_0(0)|_{lo}, f_+(0)|_{lo})$ $f_0(0)|_{up} = \min(f_0(0)|_{up}, f_+(0)|_{up})$

addition of one (common) point at $q^2 = 0$ in the dispersion matrices of f_0 and f_+ uniformly distributed in $\left[f(0) \mid_{lo}, f(0) \mid_{up} \right]$

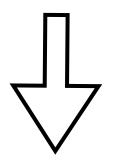
* when the percentage of events satisfying the unitarity and/or kinematical constraints is too low, the reliability of the DM bands may become questionable and we apply a procedure to recover a larger percentage of events passing the filters

skeptical procedure (from D'Agostini, arXiv: 2001.03466)

- 1. modify the standard deviations σ_i of the input data by a factor r_i while keeping fixed the averages f_i (a common value r is typically enough)
- 2. enlarge the number of bootstraps by extracting Nr values of r distributed according to a exponential distribution
- 3. select the the events passing the filters and compute their average value r*
- 4. select the event with r closest to r*

iterative procedure [arXiv:2109.15248]

- 1. recalculate the mean values and the covariance matrix of the subset of inpout data passing the filters
- 2. generate a new multivariate distribution
- 3. check unitarity and kinematical constraints
- 4. repeat steps 1-3 until convergence of the percentage of events passing the filters is reached



simpler and more effective procedure

experimental data for $B \to D^* \ell \nu_\ell$ decays

- two sets of data from Belle collaboration arXiv:1702.01521 and arXiv:1809.03290

total of 80 data points

- four differential decay rates $d\Gamma/dx$ where $x = \{w, \cos\theta_v, \cos\theta_\ell, \chi\}$: 10 bins for each variable
 - *** we do not mix theoretical calculations with experimental data to describe the shape of the FFs ***

$$|V_{cb}|_i \equiv \sqrt{\frac{(d\Gamma/dx)_i^{exp}}{(d\Gamma/dx)_i^{th}}} \qquad i = 1,...,N_{bins}$$

* issue with the covariance matrix C_{ij}^{exp} of the Belle data: $\Gamma^{exp} \equiv \sum_{i=1}^{10} \left(\frac{d\Gamma}{dx}\right)_{i}^{exp}$ should be the same for all the variables x

- we recover the above property by evaluating the correlation matrix of the experimental ratios

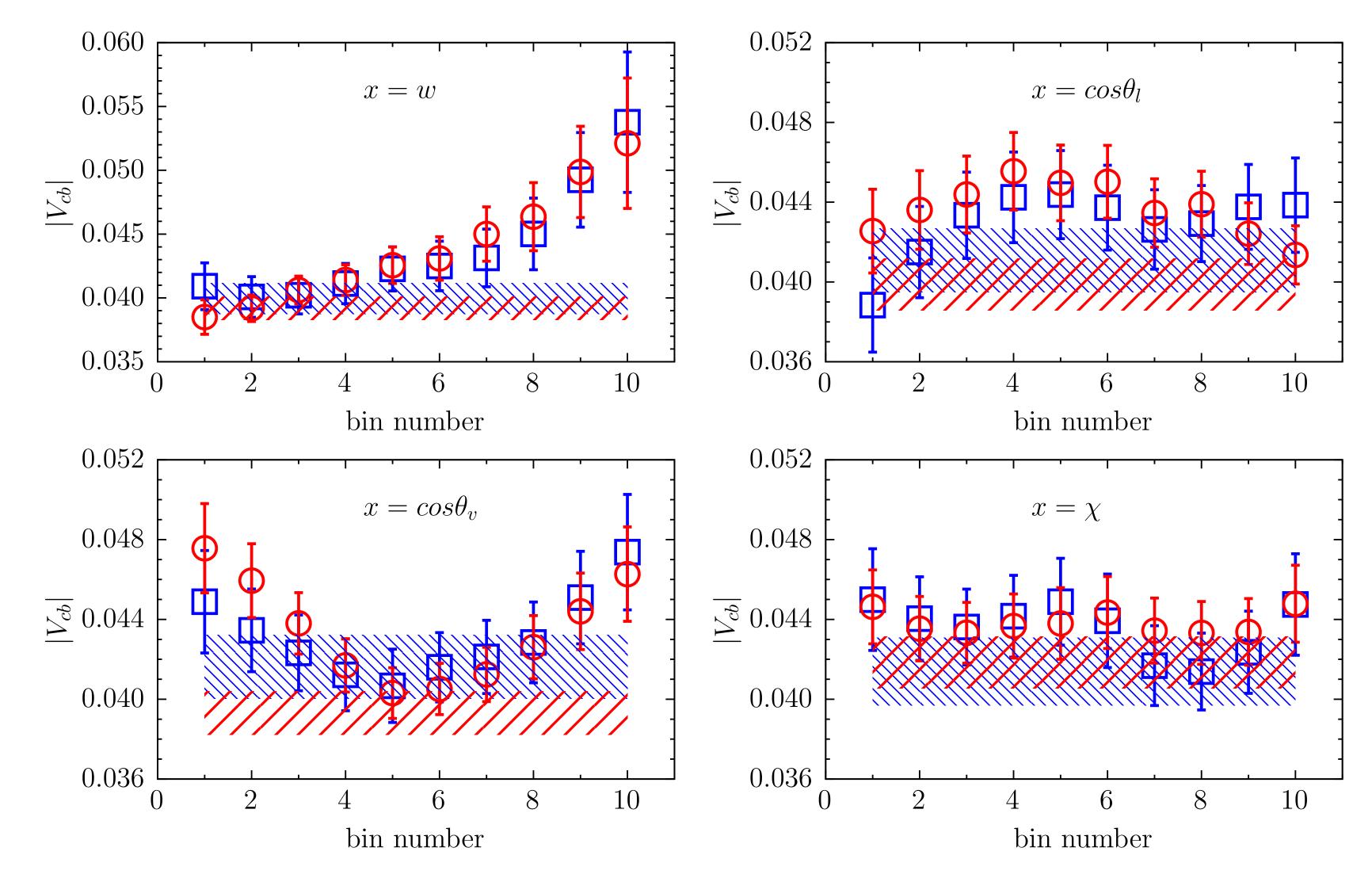
$$\frac{1}{\Gamma^{exp}} \left(\frac{d\Gamma}{dx} \right)_{i}^{exp}$$

and by considering the new covariance matrix of the experimental data given by (see arXiv:2105.08674)

$$\widetilde{C}_{ij}^{exp} \rightarrow \rho_{ij}^{ratios} \sqrt{C_{ii}^{exp} \cdot C_{jj}^{exp}}$$

extraction of $|V_{cb}|$ from $B \to D^* \ell \nu_{\ell}$ decays

original covariance matrix of Belle data



blue data: Belle 1702.01521

red data: Belle 1809.03290

bands are (correlated) weighted averages

$$|V_{cb}| = \frac{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij} |V_{cb}|_j}{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij}} ,$$

$$\sigma_{|V_{cb}|}^2 = \frac{1}{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij}}$$

$$|V_{cb}| \cdot 10^3 = 40.5 \pm 1.7$$

R(D), $R(D^*)$ and polarization observables

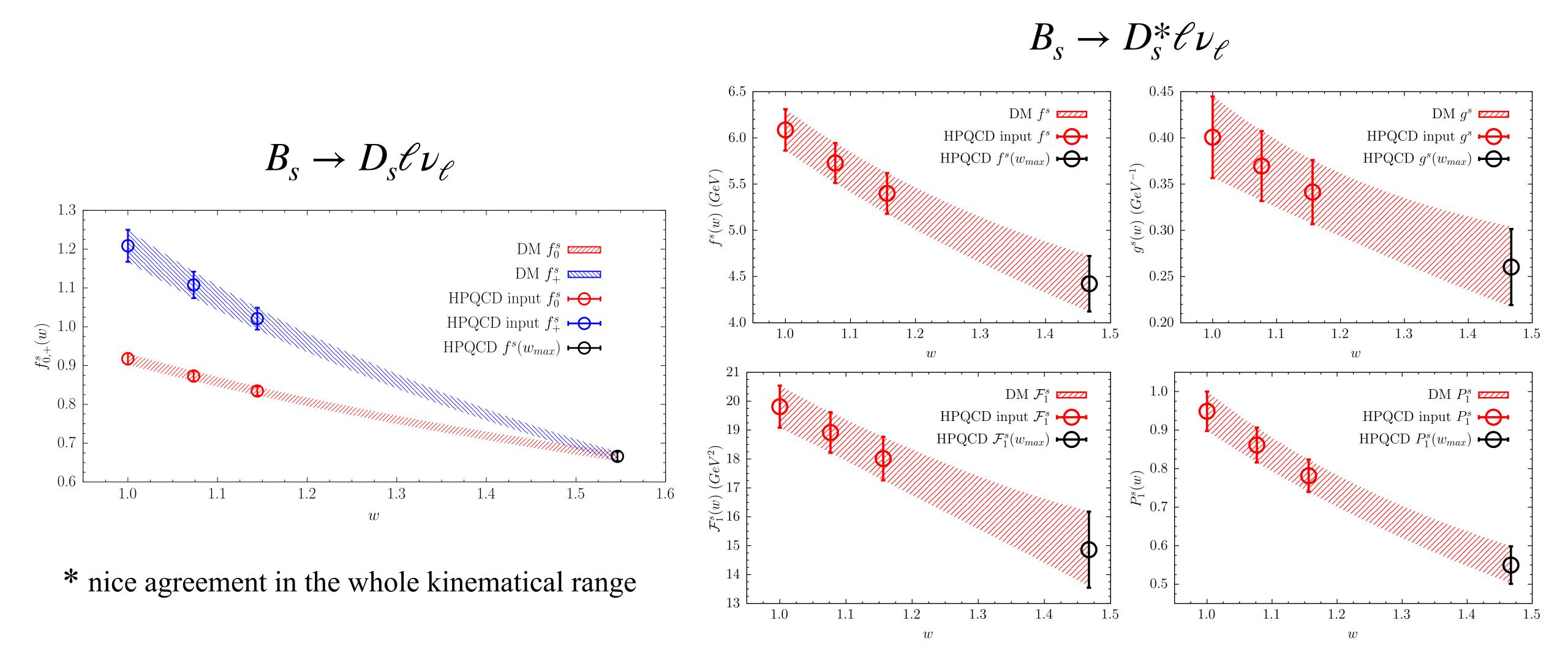
* pure theoretical and parameterization-independent determinations within the DM approach

difference	experiment	$\mathbf{D}\mathbf{M}$	observable
$\simeq 1.4 \sigma$	0.339 (26) (14)	0.296(8)	R(D)
$\simeq 1.2 \sigma$	0.295 (10) (10)	0.275(8)	$R(D^*)$
	$-0.38(51)(^{+21}_{-16})$	-0.52(1)	$P_{ au}\!(D^*)$
$\simeq 2.0 \sigma$	0.60(8)(4)	0.42(1)	$F_L(D^*)$

*** exp/SM tension significantly reduced for $R(D^*)$ ***

form factors for $B_s \to D_s^{(*)} \ell \nu_\ell$ decays

- * lattice QCD form factors from **HPQCD** arXiv:1906.00701($B_s \to D_s$) and arXiv:2105.11433 ($B_s \to D_s^*$) in the form of BCL fits in the whole kinematical range
- * we extract 3 data points for the FFs at small values of the recoil, to which we apply the DM approach



extraction of $|V_{cb}|$ from $B_s \to D_s^{(*)} \ell \nu_{\ell}$ decays

* two sets of experimental data from LHCb collaboration: arXiv:2001.03225, 2003.08453, 2103.06810

two different runs at LHC

* first analysis: ratios of branching ratios [2103.06810]

$$\frac{\mathcal{B}(B_s \to D_s \mu \nu_{\mu})}{\mathcal{B}(B \to D \mu \nu_{\mu})} = 1.09 \pm 0.05_{stat} \pm 0.06_{syst} \pm 0.05_{inputs} = 1.09 \pm 0.09$$

$$\frac{\mathcal{B}(B_s \to D_s^* \mu \nu_{\mu})}{\mathcal{B}(B \to D^* \mu \nu_{\mu})} = 1.06 \pm 0.05_{stat} \pm 0.07_{syst} \pm 0.05_{inputs} = 1.06 \pm 0.10$$

- using the PDG values for $\mathcal{B}(B \to D^{(*)}\mu\nu_{\mu})$ and the B_s -meson lifetime one gets

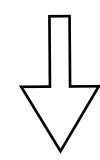
$$\Gamma^{\text{LHCb}}(B_s \to D_s \mu \nu_{\mu}) = (1.04 \pm 0.10) \cdot 10^{-14} \text{ GeV}$$

 $\Gamma^{\text{LHCb}}(B_s \to D_s^* \mu \nu_{\mu}) = (2.26 \pm 0.24) \cdot 10^{-14} \text{ GeV}$

to be compared with

$$\Gamma^{\text{DM}}(B_s \to D_s \mu \nu_\mu) / |V_{cb}|^2 = (6.04 \pm 0.23) \cdot 10^{-12} \text{ GeV}$$

 $\Gamma^{\text{DM}}(B_s \to D_s^* \mu \nu_\mu) / |V_{cb}|^2 = (1.39 \pm 0.11) \cdot 10^{-11} \text{ GeV}$

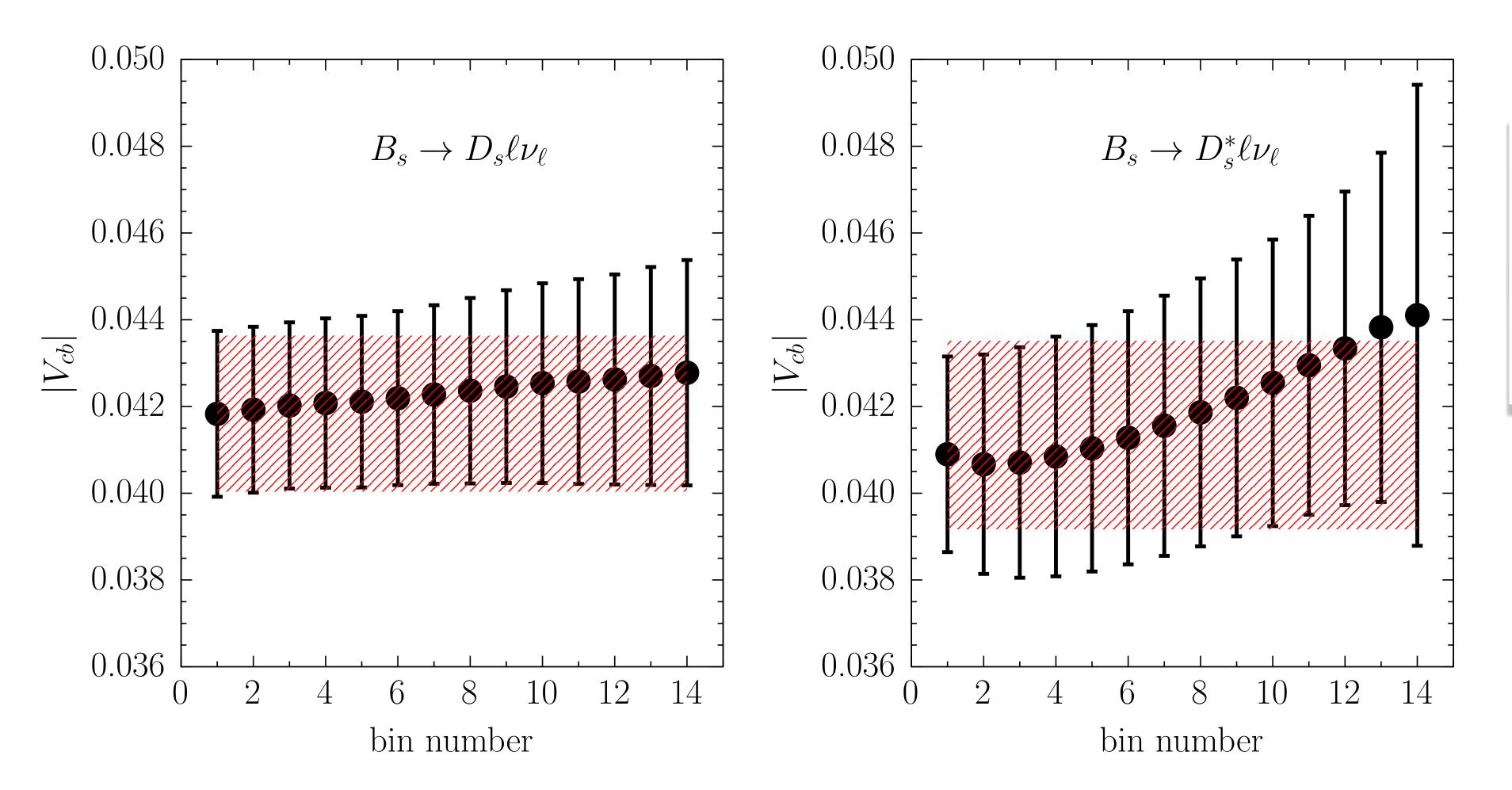


decays
$$|V_{cb}|^{\text{DM}} \cdot 10^3$$

 $B_s \to D_s \ell \nu_{\ell}$ 41.5 ± 2.1
 $B_s \to D_s^* \ell \nu_{\ell}$ 40.3 ± 2.7

* second analysis: differential decay rates reconstructed from the LHCb fits of p_{\perp} distributions (<u>BGL</u>/CLN parameterizations for the FFs) carried out in arXiv:2001.03225 (see also arXiv:2103.06810)

bin-per-bin analysis:
$$|V_{cb}|_j \equiv \sqrt{\frac{d\Gamma^{\text{LHCb}}/dw_j}{d\Gamma^{\text{DM}}/dw_j}}$$
 $j=1,...,N_{bins}$ we adopted $N_{bins}=14$ w-bins



correlated weighted averages

$$|V_{cb}| = \frac{\sum_{i,j=1}^{N_{\text{bins}}} (\mathbf{C}^{-1})_{ij} |V_{cb}|_{j}}{\sum_{i,j=1}^{N_{\text{bins}}} (\mathbf{C}^{-1})_{ij}}$$

$$\sigma_{|V_{cb}|}^{2} = \frac{1}{\sum_{i,j=1}^{N_{\text{bins}}} (\mathbf{C}^{-1})_{ij}}$$

decays
$$|V_{cb}|^{\text{DM}} \cdot 10^3$$

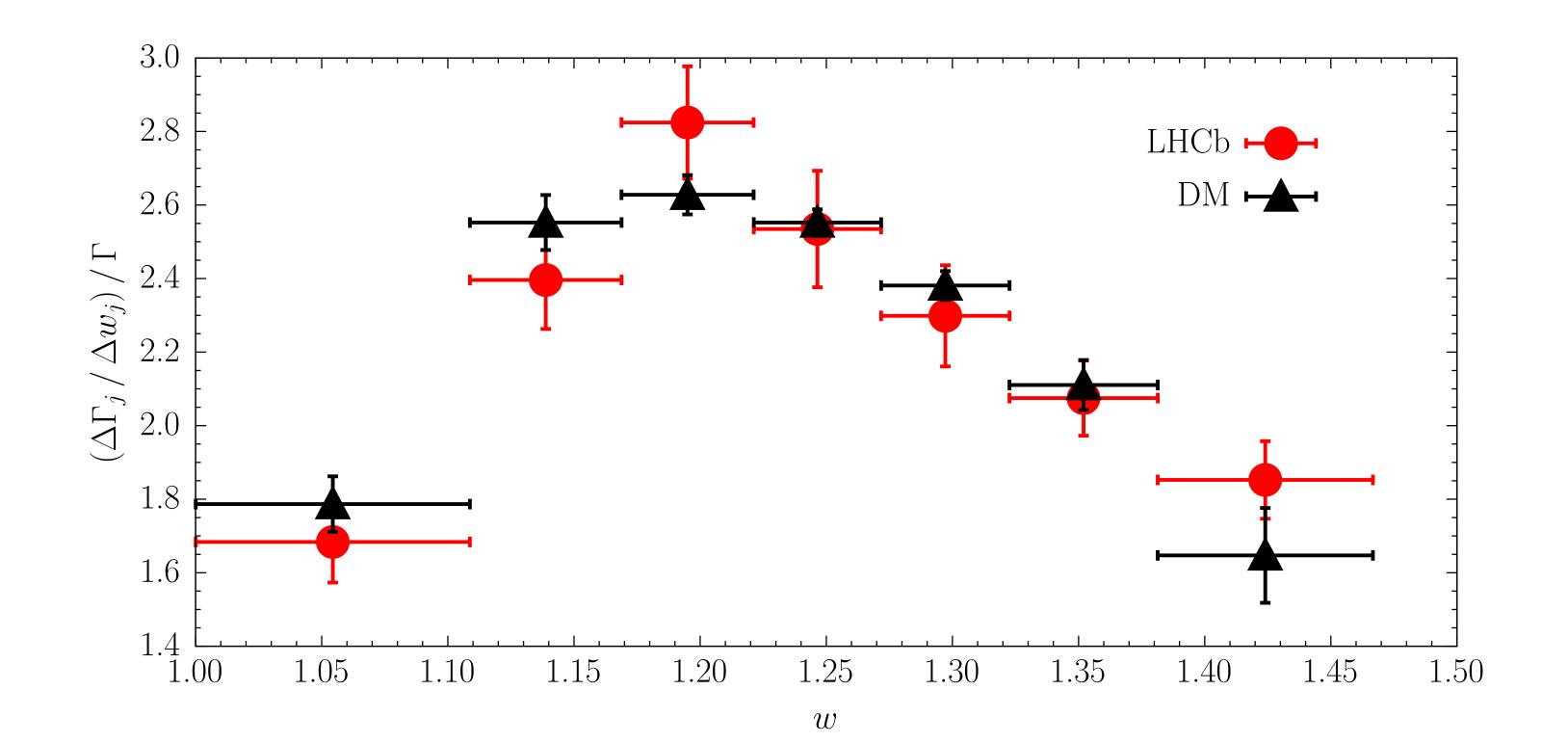
 $B_s \to D_s \ell \nu_{\ell}$ 41.8 ± 1.8
 $B_s \to D_s^* \ell \nu_{\ell}$ 41.3 ± 2.2

$$|V_{cb}|^{\text{LHCb}} \cdot 10^3 = 41.7 \pm 1.6$$

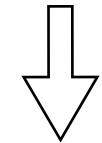
* third analysis: LHCb ratios from arXiv:2003.08453

$$\Delta r_{j} = \frac{\Delta \Gamma_{j}(B_{s} \to D_{s}^{*} \mu \nu_{\mu})}{\Gamma(B_{s} \to D_{s}^{*} \mu \nu_{\mu})} \qquad j = 1, ..., 7$$

j	1	2	3	4	5	6	7
w-bin	1.000 - 1.1087	1.1087 - 1.1688	1.1688 - 1.2212	1.2212 - 1.2717	1.2717 - 1.3226	1.3226 - 1.3814	1.3814 - 1.4667
Δw_j	0.1087	0.0601	0.0524	0.0505	0.0509	0.0588	0.0853
$\Delta r_j^{ m LHC}$	b 0.183(12)	0.144(8)	0.148(8)	0.128(8)	0.117(7)	0.122(6)	0.158(9)
$\Delta r_j^{ m DM}$	0.1942(82)	0.1534(45)	0.1377(28)	0.1289(18)	0.1212(20)	0.1241(40)	0.1405(110)



consistency within $\sim 1\sigma$



shape of theoretical FFs is consistent with the one of the experimental data

* to determine $|V_{ch}|$ we evaluate the integrated differential decay rates for each bin

$$\Delta\Gamma_j^{\text{exp}} = \Delta r_j^{\text{LHCb}} \cdot \Gamma^{\text{LHCb}}(B_s \to D_s^* \mu \nu_{\mu}) \qquad j = 1, ..., 7$$

and the covariance matrix: $\Gamma_{ij}^{\text{exp}} = R_{ij}^{\text{LHCb}} \left[\overline{\Gamma}^2 + \sigma_{\overline{\Gamma}}^2 \right] + \Delta r_i^{\text{LHCb}} \Delta r_j^{\text{LHCb}} \sigma_{\overline{\Gamma}}^2$

general property:
$$\sum_{i,j=1}^{N_{bins}} \Gamma_{ij}^{\text{exp}} = \sigma_{\overline{\Gamma}}^{2}$$

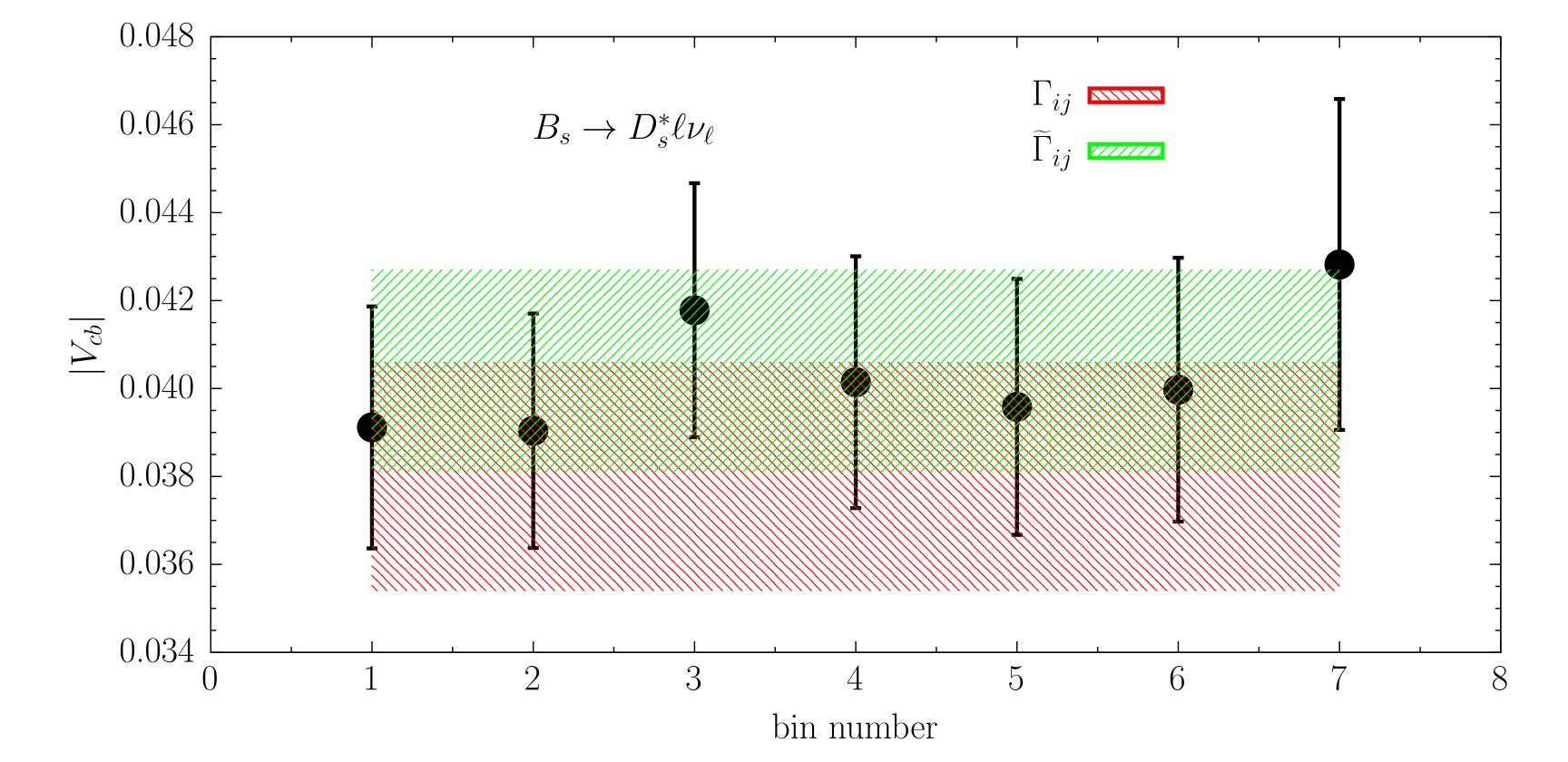
$$\sum_{i=1}^{N_{bins}} \Delta r_{i}^{\text{LHCb}} = 1 \quad \text{and} \quad \sum_{i,j=1}^{N_{bins}} R_{ij}^{\text{LHCb}} = 0$$

$$\sum_{i,j=1}^{s} \Delta r_i^{\text{LHCb}} = 1$$
 and $\sum_{i,j=1}^{N_{bins}} R_{ij}^{\text{LHCb}}$

$$\Gamma^{\text{LHCb}}(B_s \to D_s^* \mu \nu_{\mu})$$
 from arXiv:2103.06810
 $\overline{\Gamma} \pm \sigma_{\overline{\Gamma}} = (2.26 \pm 0.24) \cdot 10^{-14} \text{ GeV}$

*** uncorrelated with
$$\Delta r_j^{\text{LHCb}}$$

- D'Agostini effect (NIMA '94): negative bias on constant fits to data affected by an overall normalization uncertainty; it depends upon $\sigma_{\overline{\Gamma}}$ and $\Delta r_i^{\text{LHCb}} \neq \Delta r_i^{\text{LHCb}}$



modified covariance matrix

$$\widetilde{\Gamma}_{ij}^{\text{exp}} = R_{ij}^{\text{LHCb}} \left[\overline{\Gamma}^2 + \sigma_{\overline{\Gamma}}^2 \right] + \sigma_{\overline{\Gamma}}^2 / N_{bins}^2$$

$$\sum_{i, i=1}^{N_{bins}} \widetilde{\Gamma}_{ij}^{\text{exp}} = \sum_{i, i=1}^{N_{bins}} \Gamma_{ij}^{\text{exp}} = \sigma_{\overline{\Gamma}}^2$$

correlated weighted averages

$$|V_{cb}| \cdot 10^3 = 38.0 \pm 2.6$$

$$|V_{cb}| \cdot 10^3 = 40.4 \pm 2.3$$

$$|V_{cb}|^{\mathrm{DM}} \cdot 10^{3} \text{ from } B_{s} \to D_{s}^{(*)} \ell \nu_{\ell}$$
 summary of $|V_{cb}|^{\mathrm{DM}} \text{ from } B_{(s)} \to D_{(s)}^{(*)} \ell \nu_{\ell}$ analysis $B_{s} \to D_{s}$ $B_{s} \to D_{s}^{*}$ decay $|V_{cb}|^{\mathrm{DM}} \cdot 10^{3}$ inclusive exclusive first 41.5 ± 2.1 40.3 ± 2.7 $[2107.00604]$ [FLAG 21] second 41.8 ± 1.8 41.3 ± 2.2 $B \to D$ 41.0 ± 1.2 third 40.4 ± 2.3 $B \to D^{*}$ 41.3 ± 1.7 average 41.7 ± 1.9 40.7 ± 2.4 $40.$

summary of $R(D_{(s)})$, $R(D_{(s)}^*)$ and polarization observables

observable	DM	O	bservable	DM	experiment	difference
$R(D_{s})$	0.298 (5)		R(D)	0.296(8)	0.339(27)(14)	$\simeq 1.4 \sigma$
$R(D_s^*)$	0.250(6)	←	$R(D^*)$	0.275(8)	0.295 (10) (10)	$\simeq 1.2 \sigma$
$P_{\tau}(D_{s}^{*})$	-0.520(12)	SU(3) _F breaking?	$P_{\tau}\!(D^*)$	-0.52(1)	$-0.38(51)(^{+21}_{-16})$	
$F_L(D_s^*)$	0.440(16)		$F_L(D^*)$	0.42(1)	0.60(8)(4)	$\simeq 2.0 \sigma$

 Γ_i : mean values $\overline{\Gamma}_i$ and covariance matrix C_{ij} i, j = 1, ..., N

$$\Gamma = \sum_{i=1}^{N} \Gamma_i$$

mean value
$$\overline{\Gamma} = \sum_{i=1}^{N} \overline{\Gamma}_i$$
 and variance $\sigma_{\Gamma}^2 = \sum_{i,j=1}^{N} C_{ij}$

$$\sum_{i,j=1}^{N} C_{ij} = \sum_{i,j=1}^{N} \left\langle (\Gamma_i - \overline{\Gamma}_i)(\Gamma_j - \overline{\Gamma}_j) \right\rangle = \left\langle \left[\sum_{i=1}^{N} (\Gamma_i - \overline{\Gamma}_i) \right]^2 \right\rangle = \left\langle (\Gamma - \overline{\Gamma})^2 \right\rangle \equiv \sigma_{\Gamma}^2$$

$$\Gamma_i = r_i \cdot \Gamma$$
 $i = 1, ..., N$

 r_i : mean values \bar{r}_i and covariance matrix R_{ij}

 Γ : mean value $\overline{\Gamma}$ and variance σ_{Γ}^2 uncorrelated with all the $r_i's$

 Γ_i : mean values $\overline{\Gamma}_i = \overline{r}_i \cdot \overline{\Gamma}$ and covariance matrix $C_{ij} = R_{ij} \cdot [\overline{\Gamma}^2 + \sigma_{\Gamma}^2] + \overline{r}_i \overline{r}_j \sigma_{\Gamma}^2$

$$r_i = \overline{r}_i + \sqrt{R_{ii}} \sum_{k=1}^N U_{ik}^T \sqrt{\lambda_k} \cdot \xi_k \qquad \qquad R_{ij} = \sqrt{R_{ii}R_{jj}} \sum_{k=1}^N U_{ik}^T \lambda_k U_{kj} \qquad \qquad \xi_k : \text{uncorrelated variables}$$

$$< \xi_k > = 0 \text{ and } < \xi_k \xi_{k'} > = \delta_{kk'}$$

$$\Gamma = \overline{\Gamma} + \sigma_{\Gamma} \cdot \xi_{\Gamma}$$
 ξ_{Γ} ξ_{Γ} : uncorrelated variable with all the ξ_k variables $\xi_{\Gamma} > 0$ and $\xi_{\Gamma} > 0$ and $\xi_{\Gamma} > 0$

$$C_{ij} = \langle (r_i \cdot \Gamma - \overline{r}_i \cdot \overline{\Gamma})(r_j \cdot \Gamma - \overline{r}_j \cdot \overline{\Gamma}) \rangle = \sqrt{R_{ii}R_{jj}} \sum_{k=1}^{N} U_{ik}^T \lambda_k U_{jk}^T \left[\overline{\Gamma}^2 + \sigma_{\Gamma}^2 \right] + \overline{r}_i \overline{r}_j \sigma_{\Gamma}^2 = R_{ij} \left[\overline{\Gamma}^2 + \sigma_{\Gamma}^2 \right] + \overline{r}_i \overline{r}_j \sigma_{\Gamma}^2$$

$$\Delta r_j = \frac{\Delta \Gamma_j(B_s \to D_s^* \mu \nu_\mu)}{\Gamma(B_s \to D_s^* \mu \nu_\mu)} \qquad j = 1, ..., 7$$

- constrain
$$\sum_{j=1}^{7} \Delta r_j = 1$$

- constrain $\sum_{j=1}^{7} \Delta r_j = 1$ 1) one null eigenvalue of the covariance matrix R_{ij}^{LHCb} (six independent ratios)

2)
$$\sum_{i,j} R_{ij}^{\text{LHCb}} = 0$$
 (null variance for the sum)

- experimental covariance matrix $R_{ii}^{\rm LHCb}$:

eigenvalues
$$\lambda_j = \{0.072, 0.21, 0.33, 0.53, 0.73, 1.03, 2.33\} \cdot 10^{-4}$$
 and $\sum_{i,j} R_{ij}^{\text{LHCb}} = 1.45 \cdot 10^{-3}$ $\sim 3.8\%$ to be added (in

$$\sum_{i,j} R_{ij}^{\text{LHCb}} = 1.45 \cdot 10^{-3}$$

$$\sim 3.8\% \text{ to be added (in quadrature) to the error of the total decay rate}$$

- modified covariance matrix
$$\widetilde{R}_{ij}^{\text{LHCb}}$$
: $\widetilde{\Delta r}_j = \Delta r_j / \sum_{k=1}^{7} \Delta r_k$

eigenvalues
$$\widetilde{\lambda_j} = \{0.0, 0.073, 0.22, 0.34, 0.53, 0.74, 1.14\} \cdot 10^{-4}$$
 and $\sum_{i,j} \widetilde{R}_{ij}^{\text{LHCb}} = 0$

LQCD form factors for $B \to \pi \ell \nu_{\ell}$ decays

	RBC/UKQCD	FNAL/MILC	Combined
$f_{+}^{\pi}(19.0 \text{ GeV}^2)$	1.21(10)(9)	1.17(8)	1.19(11)
$ f_+^{\pi}(22.6 \text{ GeV}^2) $	2.27(13)(14)	2.24(12)	2.25(16)
$f_{+}^{\pi}(25.1 \text{ GeV}^2)$	4.11(51)(29)	4.46(23)	4.29(48)
$f_0^{\pi}(19.0 \text{ GeV}^2)$	0.46(3)(5)	0.46(3)	0.46(5)
$ f_0^{\pi}(22.6 \text{ GeV}^2) $	0.68(3)(6)	0.65(3)	0.66(5)
$f_0^{\pi}(25.1 \text{ GeV}^2)$	0.92(3)(6)	0.86(3)	0.89(6)

combined:

RBC/UKQCD (arXiv:1501.05363)

FNAL/MILC (arXiv:1503.07839)

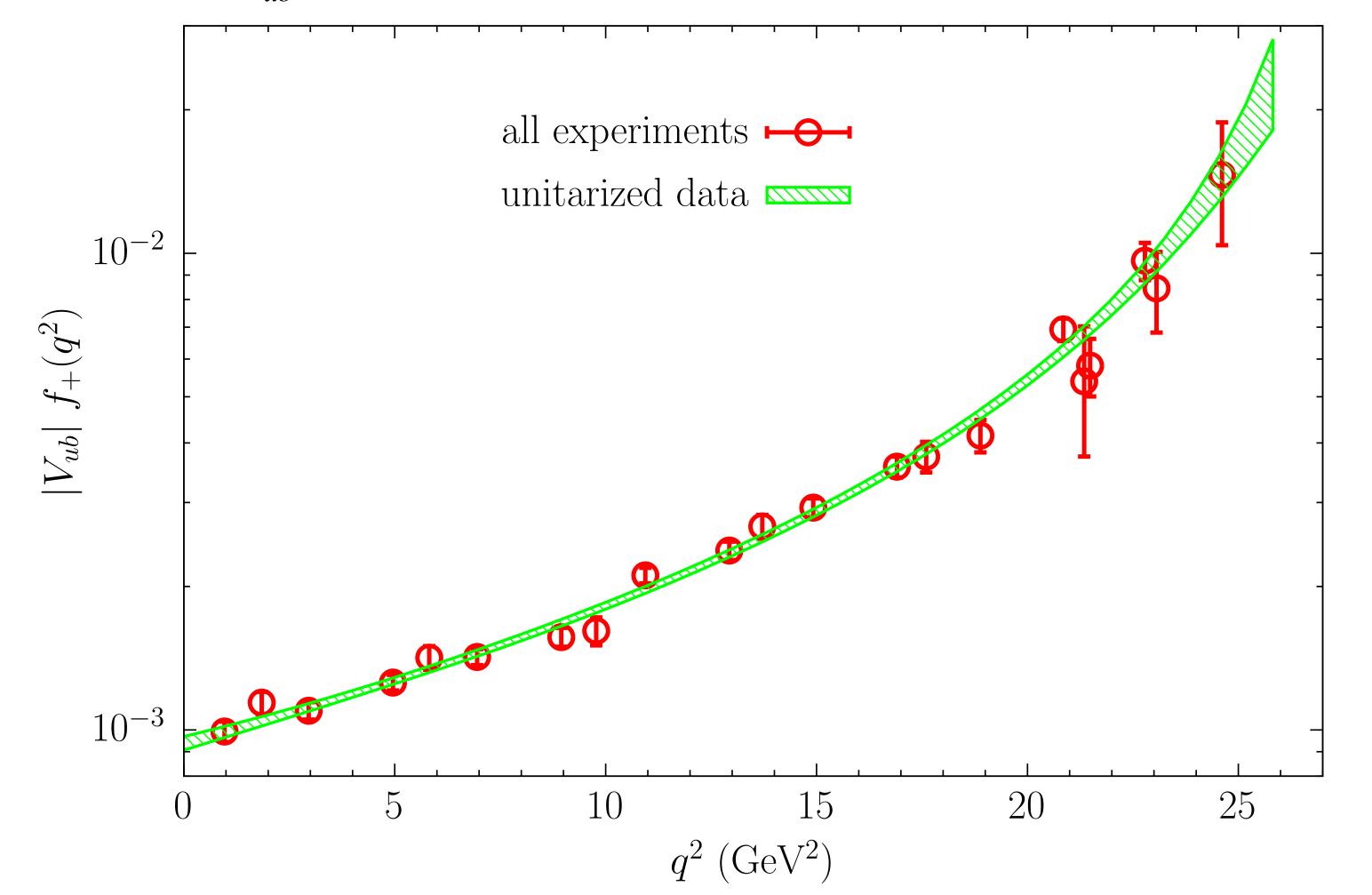
$$\mu_x = \frac{1}{N} \sum_{k=1}^{N} x_k,$$

$$\sigma_x^2 = \frac{1}{N} \sum_{k=1}^{N} \sigma_k^2 + \frac{1}{N} \sum_{k=1}^{N} (x_k - \mu_x)^2.$$

$$C(x_i, x_j) \equiv \frac{1}{N} \sum_{k=1}^{N} C(x_i, x_j)_k + \frac{1}{N} \sum_{k=1}^{N} (x_k^i - \mu_x^i)(x_k^j - \mu_x^j).$$

a new strategy: unitarization of the data

- * construct the experimental values of $|V_{ub}f_+(q_i^2)| = \sqrt{\Delta\Gamma_i/z_i}$ $(z_i = \text{kinematical coefficient in the i-th bin})$
- * apply the DM method on the data points $|V_{ub}f_+(q_i^2)|$ using the unitarity bound $|V_{ub}|^2 \chi_{1-}(0)$ with an initial guess for $|V_{ub}|$
- * determine $|V_{ub}|$ using the theoretical DM bands and iterate the procedure until consistency for $|V_{ub}|$ is reached



we still keep separate the theoretical calculations and the experimental data for describing the shape of the FFs

$$|V_{ub}|_{DM} \cdot 10^3 = 3.88 \pm 0.32$$

$$|V_{ub}|_{incl.} \cdot 10^3 = 4.32 \pm 0.29$$

difference of $\approx 1\sigma$

$$|V_{ub}|_{excl.} \cdot 10^3 = 3.74 \pm 0.17$$
 (FLAG '21)

the FLAG error is much smaller because the exp. data are used to describe the shape of the FFs In the massless lepton limit $(m_{\ell} = 0)$ the differential rate for the semileptonic $B \to \pi \ell \nu_{\ell}$ decay is given by

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 f_+^2(q^2) , \qquad (1)$$

where

$$p_{\pi}^{3} = \frac{m_{B}^{3}}{8} \left[(1 + r^{2} - q^{2}/m_{B}^{2})^{2} - 4r^{2} \right]^{3/2}$$
 (2)

with $r \equiv m_{\pi}/m_B$.

Let us consider a series of bins in q^2 , namely from $q_i^2 - \Delta_i/2$ to $q_i^2 + \Delta_i/2$ with i = 1, 2, ..., N. Using the experimental data for the integrated rate in the various bins, $\Delta \Gamma_i \equiv C_v \Delta B_i/\tau_B$, we can obtain the values of $|V_{ub}|^2 f_+^2(q^2)$ by choosing a series of values \overline{q}_i^2 by requiring the vanishing of the contribution of the slope of the form factor $f_+^2(q^2)$ in the given bin. This leads to

$$|V_{ub} f_{+}(\overline{q}_{i}^{2})| = \sqrt{\frac{\Delta \Gamma_{i}}{z_{i}}} , \qquad (3)$$

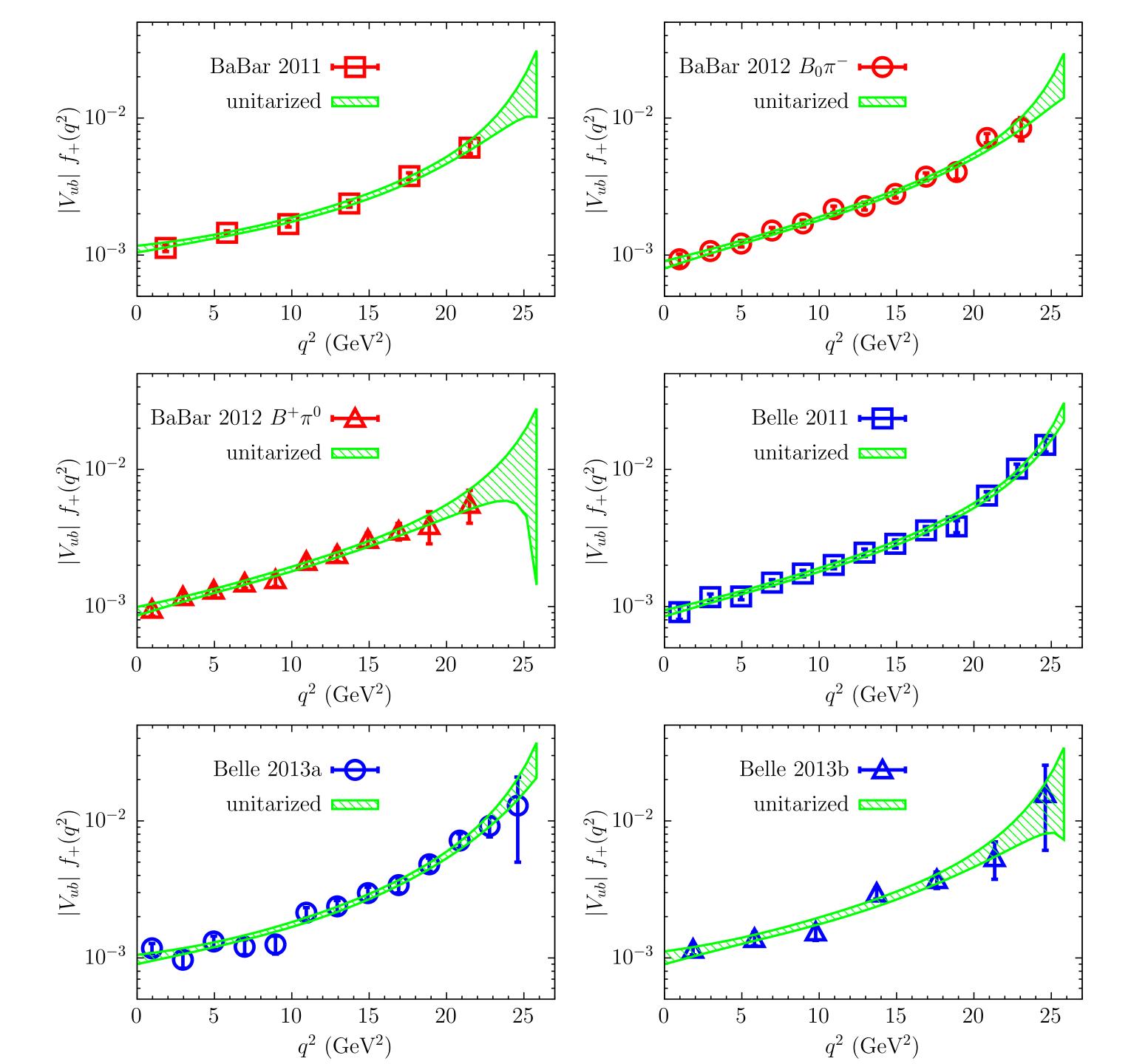
where

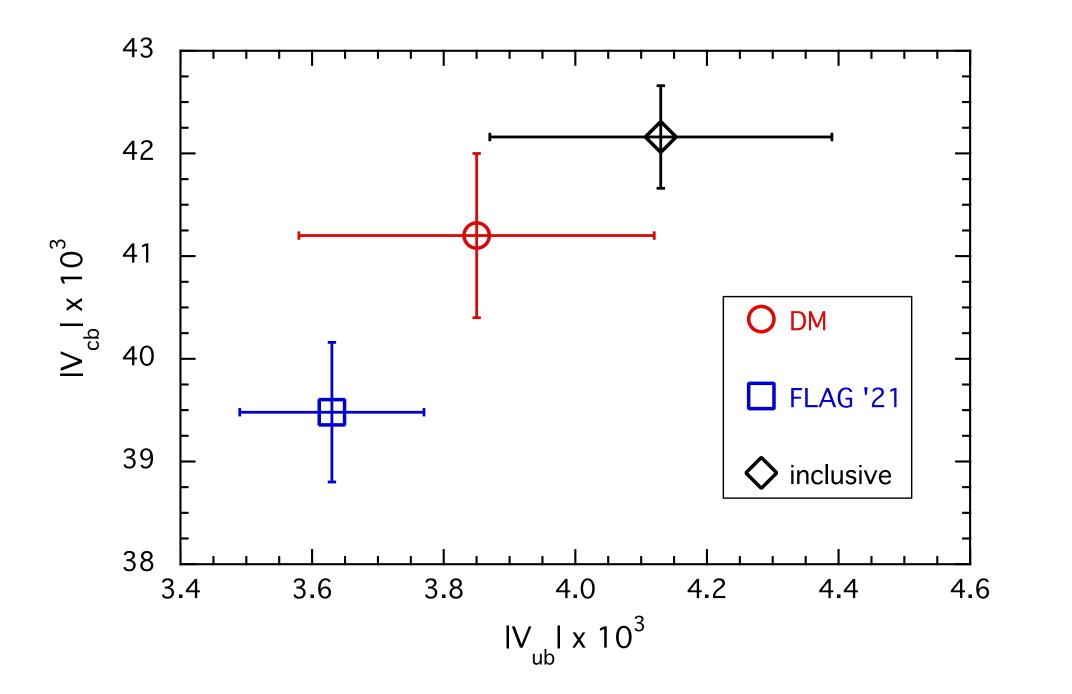
$$z_{i} \equiv \frac{G_{F}^{2}}{24\pi^{3}} \frac{m_{B}^{3}}{8} \int_{q_{i}^{2} - \Delta_{i}/2}^{q_{i}^{2} + \Delta_{i}/2} dq^{2} \left[(1 + r^{2} - q^{2}/m_{B}^{2})^{2} - 4r^{2} \right]^{3/2}$$

$$(4)$$

and

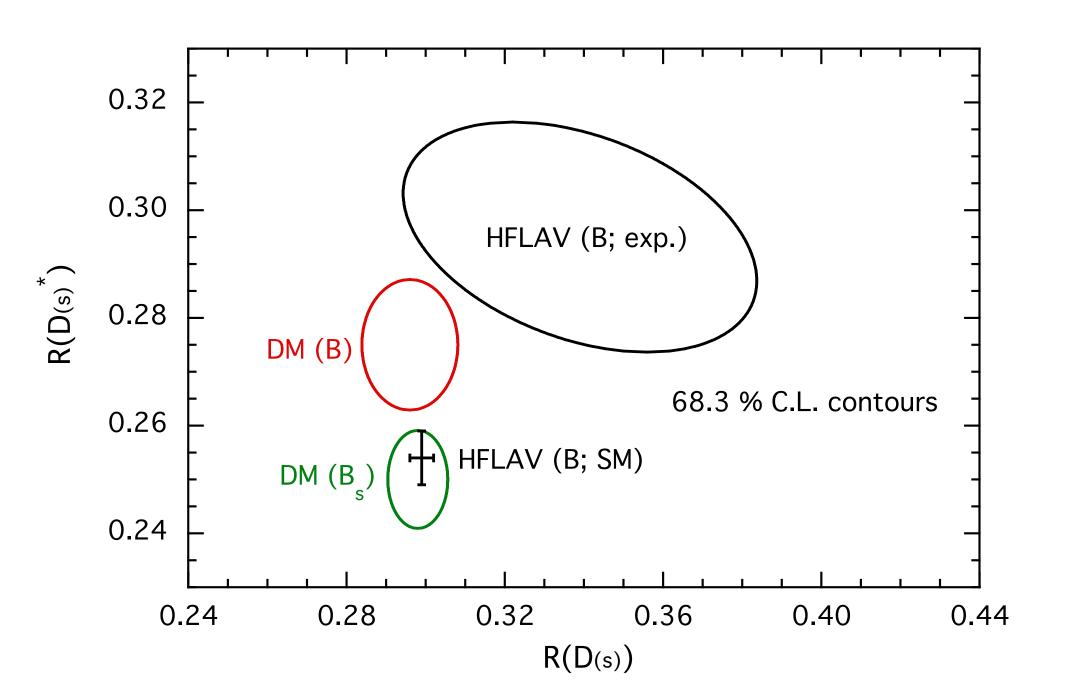
$$\overline{q}_{i}^{2} \equiv \frac{\int_{q_{i}^{2} - \Delta_{i}/2}^{q_{i}^{2} + \Delta_{i}/2} dq^{2}q^{2} \left[(1 + r^{2} - q^{2}/m_{B}^{2})^{2} - 4r^{2} \right]^{3/2}}{\int_{q_{i}^{2} - \Delta_{i}/2}^{q_{i}^{2} + \Delta_{i}/2} dq^{2} \left[(1 + r^{2} - q^{2}/m_{B}^{2})^{2} - 4r^{2} \right]^{3/2}}.$$
(5)





	decays	DM	FLAG '21	inclusive
V _{cb} •10 ³	$B_{(s)} \rightarrow D_{(s)}^{(*)}$	41.2 (8)	39.48 (68)	42.16 (50)
V _{ub} •10 ³	$B_{(s)} \rightarrow \pi(K)$	3.85 (27)	3.63 (14)	4.13 (26)

reduced tensions in $|V_{cb}|$, $|V_{ub}|$



	DM	HFLAV '21 (exp.)	HFLAV '21 (SM)
R(D)	0.296 (8)	0.339 (26) (14)	0.299 (3)
$R(D^*)$	0.275 (8)	0.295 (10) (10)	0.254 (5)
$R(D_s)$	0.298 (5)		
$R(D_s^*)$	0.250 (6)		

reduced tension in $R(D^*)$ (using the FNAL ff's)

channel	# LQCD	# exp's
$B \rightarrow D$	1	1
$B \rightarrow D^*$	1	2/3
$B_s \rightarrow D_s$	1	2
$B_s \rightarrow D_s^*$	1	2
$\mathrm{B} o \pi$	2	6/7
$B_s \rightarrow K$	3	1