Q C D @ W O R K - LECCE, June 27th, 2022 Measuring QCD in its extremes at ATLAS

Ynyr Harris (University of Oxford) on behalf of the ATLAS Collaboration

Extreme QCD happens at the LHC

In high multiplicity pp, p+Pb, and Pb+Pb collisions — little bangs producing big bang matter

One of the first Heavy Ion collisions seen in ATLAS in November 2015

[More Event Displays]

A Toroidal LHC Apparatus (ATLAS)

Designed to discover the Higgs boson

 $z = \pm 140 \text{ m}, |\eta| > 8.3$ Tungsten plates, quartz rods (Measure spectator neutrons)

Muon Spectrometer

The Extreme QCD Programme of ATLAS

- Probes of the Quark Gluon Plasma (QGP) and precision tests of the Standard Model

Today: A Cross-Section of Recent Results

8 extreme QCD results from the Heavy Ion and Standard Model groups

A non-exhaustive list – see all public results here.

def. Centrality Intervals A detector-level measure of nuclear overlap

UCC: Ultracentral Collisions trigger UCC-1: total FCal $E_T > 4.21$ TeV UCC-2: total FCal $E_T > 4.54$ TeV

Strong monotonic correlation with collision impact parameter

Two-Particle Azimuthal Correlations [PRC 104 (2021), 014903] A classic measurement in Heavy Ion physics, for the first time in UPC

Initial-state non-uniformities 'flow' by rescattering into final-state momentum anisotropies parameterised as Fourier coefficients v_2 (ellipticity), v_3 (triangularity), up to fourth order

Collective behaviour is seen in large (Pb+Pb) and small (p+Pb, pp) systems ...but does it persist to even smaller systems like γ+Pb? Measure v₂ and v₃ to find out

Near-side peak $(\Delta \phi, \Delta \eta) \approx (0, 0)$

From correlations between jet fragments (non-flow and truncated to show other structures)

Footnote: the exact parameterisation

Sum of an azimuthally-modulated pedestal function and a non-flow component templated from Low Multiplicity (LM) events

$$Y^{\rm HM}(\Delta\phi) = FY^{\rm LM}(\Delta\phi) + G\left\{1 + 2\sum_{n=2}^{4} v_{n,n}\cos(n\Delta\phi)\right\}$$

Two-Particle Azimuthal Correlations [PRC 104 (2021), 014903] Observation of non-zero flow parameters v_2 and v_3

Measurement performed in 2018 Minimum-Bias and High-Multiplicity photonuclear events with rapidity gaps, assuming factorisation of the two-particle flow coefficients into single-particle coefficients

First observation of significant non-zero flow coefficients in UPC

Caveat: factorisation only demonstrated in v_2 in 0.4 < p_T < 2 GeV — violation at high p_T (negative v_n ...)? Otherwise, consistency with other collision systems (within large uncertainties)

Cross-Sections of Dijet Production in UPC [CONF-2022-021]

Towards precise limits on nuclear PDFs

Z Boson-Hadron Correlations[PRC 126 (2021), 072301]Pb+Pb medium-induced modifications to Z-tagged charged-particle yields

Z boson does not interact with the QGP

Use it to deduce the initial kinematics of the hard-scattered partons in Z+jet events without bias

Systematic modification of the per-Z yields in Pb+Pb collisions

Due to interactions between the QGP and parton shower — but what is the mechanism of energy loss?

Y(nS) production[(Submitted to PRC)]Footage of the Quark Gluon Plasma in Pb+Pb collisions

Bottom quarks are produced early in the formation of the Quark Gluon Plasma — and can be used to probe its full evolution

(Extract Y yields by fitting $m_{\mu\mu}$ spectrum.)

$\Upsilon(nS) production$ Suppression of Pb+Pb vs pp and $\Upsilon(nS)$ vs $\Upsilon(1S)$

Nuclear modification factor

Suppression of all states across entire range of centrality No $p_T^{\mu\mu}$ or $y^{\mu\mu}$ dependence Υ (2S) and Υ (2S+3S) more suppressed

$$\rho_{AA}^{\Upsilon(\mathrm{nS})/\Upsilon(\mathrm{1S})} = R_{AA}(\Upsilon(\mathrm{nS}))/R_{AA}(\Upsilon(\mathrm{1S}))$$

Excited-to-ground state double ratios

All smaller than one – sequential suppression Compared to various predictions...

Y (3S) not shown because peak is statistically insignificant in this dataset

[(Submitted to PRC)]

Summary of Jet Quenching Measurements Mass matters – but it isn't the only thing

(For completeness [Heavy Ion Summary R_{AA} plots, 2022])

\Rightarrow R = 0.2 inclusive vs b-jets

Heavy jets less suppressed than inclusive jets Suggests a role for mass and colour in energy loss (Submitted to EPJC)

📋 Also: dijets

Increased fraction of imbalanced jets compared to in pp Subleading jets significantly more suppressed (Submitted to PRC)

Jet Quenching Or a lack thereof (?) in p+Pb collisions

QCD@Work Ynyr Harris — 27 Jun 2022

⇒ Severe constraint on the amount of jet quenching in p+Pb collisions

[(Submitted to PRL)]

Latest in Photon-Fusion The observation of $Pb(\gamma\gamma \rightarrow \tau\tau)Pb$

[(Submitted to PRL)]

Pb PbPb Pb Pb Pb $\gamma\gamma \rightarrow \tau\tau$ Apr 2022 arXiv:2204.13478 Pb Pb \mathbf{Pb} Pb PbPb $\gamma\gamma \rightarrow ee$ ue-SR µ1T-SR µ3T-SR Apr 2022 ATLAS-CONF-2022-025 Profile-likelihood fits $\gamma\gamma \rightarrow \gamma\gamma$ Signal strength: **OPAL 1998** Jul 2019 $\mu_{\tau\tau} = 1.04^{+0.06}_{-0.05}$ (tot) L3 1998 JHEP 03 (2021) 243 DELPHI 2004 PRL 123 (2019), 052001 ATLAS Nat. Phys. 13, 852-858 (2017) Pb+Pb vs_{NN}=5.02 TeV, 1.44 nb⁻¹ Constraints on the tau lepton's μ1T-SR anomalous magnetic moment, Best-fit value 68% CL μ3T-SR $a_{\tau} = (g_{\tau} - 2)/2$ $\gamma\gamma \rightarrow \mu\mu$ 95% CL μe-SR Nov 2018 Combined PRL 121 (2018), 212301 Expected PRC 104 (2021), 024906 -0.05 0.05 0.1 -0.1 0 a_τ

Next-Level QCD

[JHEP 11 (2021) 169]

Prompt production of photon pairs in 13 TeV pp collisions

Next-Level QCD Estimation of the {yj, jy, jj, ee, pileup} backgrounds

2x2D side-bands method Events/1000 4500 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Data [A technique from diphoton analyses] $\gamma \gamma$ signal ATLAS 4000 - Define 15 background-enriched control regions Yİ 3500 - Extrapolate using a profile likelihood fit 3000 electron 2500 yy pile-up 2000 χ^2 /NDF = 4.5/2 Leading candidate isolation Prob. = 0.11 1500 Pass Fail Pass Fail 1000 Sub-leading candidate identification 8 16 6 14 Fail Sub-leading candidate isolation 500 Fail 0 13 PP 12 FF 14 PF 2 3 4 5 6 8 9 10 11 15 16 Pass 5 7 13 15 FP PF PP FP FF PP PF FP FF PP PF FP FF Region index and isolation status Pass-Pass id. Pass-Fail id. Fail-Pass id. Fail-Fail id. Diphoton identification region 2 10 12 Fail 4 Pass Unravel Pass 3 9 11 Signal region Fail Pass Leading candidate identification Unfolding to particle-level Using an iterative technique based on Bayes' theorem.

To compare with theory predictions without detector effects.

[JHEP 11 (2021) 169]

Next-Level QCD

Results: differential and integrated cross-sections

(Expected) Failure of fixed-order predictions

(Also $p_{T,\gamma}$, $m_{\gamma\gamma}$, $|\cos \theta^|^{(CS)}$ (scattering angle in Collins–Soper frame), ϕ_{η}^* , $\pi - \Delta \phi_{\gamma\gamma}$ (acoplanarity), $a_{T,\gamma\gamma}$ (p_T transverse to thrust axis))

ntegrated fiducia	l cross section	[pb]
-------------------	-----------------	------

[JHEP 11 (2021) 169]

Fiducial cross section [pb]	$\sigma_{\gamma\gamma}$	± unc.
SHERPA MEPS@NLO	33.2	+7.7 -5.6
Nnlojet NNLO	29.7	+2.4 -2.0
NLO	19.6	+1.6 -1.3
LO	5.3	$^{+0.5}_{-0.5}$
Diphox NLO	20.8	+3.2 -2.9
Data	31.4	2.4

Summary 8 extreme QCD results

1. Two-Particle Azimuthal Correlations

Non-zero v_2 and v_3 flow coefficients observed in p+Pb

2. *Differential Cross-Sections of Dijet Production in UPC* An important step towards precise limits on nuclear PDFs

3. *Z Boson–Hadron Correlations in Pb+Pb* Systematic quenching of the shower

- 4. Suppression of Y(nS) States in Pb+Pb Collisions
- 5. Summary of Jet Quenching Measurements
- 6. Strong Constraints on Jet Quenching in p+Pb

7. Observation of Photon-Fusion to τ-Lepton Pairs With interpretation of the τ-lepton's anomalous magnetic moment

8. Verification of NNLO Predictions in y-Pair Production Data

And more to come from ATLAS in Run 3 and beyond

BACKUP

Schematic of the Liquid Argon (LAr) Calorimeter

Figure 1-1 Perspective view of one half of the barrel cryostat.

Technical Design Report of the LAr Calorimeter, CERN-LHCC-96-041

Schematic of the Tile Calorimeter

Technical Design Report of the Tile Calorimeter, CERN-LHCC-96-042

'Photonuclear' Collisions

Figure 1: Diagrams representing different types of photonuclear collisions and the general features of their event topologies. *Left:* the direct process, in which the photon itself interacts with the nucleus. *Right:* the resolved process, in which the photon fluctuates into a hadronic state.

[From ATLAS, *Two-Particle Azimuthal Correlations in Photonuclear Ultraperipheral Collisions*, Jul 2021, 2101.10771]

[2101.10771]

'Sum of Gaps' Rapidity Gap

Sum of gaps algorithm: (i) sort tracks and calorimeter clusters in η , (ii) add together contiguous rapidity gaps that are greater than $\Delta \eta = 0.5$ (so that gaps may be separated by isolated slivers of particle production). This captures *resolved* photonuclear collisions in addition to direct photonuclear collisions.

[2101.10771]

p+Pb Modelling Performance DPMJET-III γ+Pb vs γ+p vs Pythia 8 γ+p

Two-Particle Correlations $C(\Delta \phi, \Delta \eta)$

Emphasis on the near-side peak and away-side ridge

$$C(\Delta\phi, \Delta\eta) = \frac{1}{N_a} \left. \frac{d^2 N_{\text{pair}}}{d\Delta\phi d\Delta\eta} \right| \left. \frac{1}{N_{\text{pair}}^{\text{mixed}}} \frac{d^2 N_{\text{mixed}}}{d\Delta\phi d\Delta\eta} \right|$$

Lower- p_{τ}^{a} (a)

Pair yields $d^2 N_{pair}$ corrected for acceptance effects Mixed sample comprises pairs from different events

Due to momentum conservation in the transverse plane; a non-flow contribution. (Truncated to show other structures)

[2101.10771]

Non-Flow Subtraction

[2101.10771]

To emphasise the azimuthal modulations due to flow contributions

Correlation function in Low Multiplicity events

Exhibiting no flow, these events are the template to subtract. Free, fourth order Fourier series parameterisation.

Non-Flow Subtraction

To emphasise the azimuthal modulations due to flow contributions

$$Y^{\text{HM}}(\Delta\phi) = FY^{\text{LM}}(\Delta\phi) + G\left\{1 + 2\sum_{n=2}^{4} v_{n,n}\cos(n\Delta\phi)\right\}$$

Factorisation assumption

Factor out one of the particles of the two-particle flow coefficient to get *single-particle* flow coefficients.

$$v_n(p_T^a) = v_{n,n}(p_T^a, p_T^b) / v_n(p_T^b) = v_{n,n}(p_T^a, p_T^b) / \sqrt{v_{n,n}(p_T^b, p_T^b)}$$

What about negative v_n ?

Suggests the violation of factorisation and non-flow behaviour

[2101.10771]

[2206.01138 (PRL)]

Jet Quenching Analysis Centrality definition

Figure 1: Distribution of energy measured in the Pb-going side of the zero-degree calorimeter (E_{ZN}) in *p*+Pb collisions at 5.02 TeV selected with a minimum-bias trigger. Dashed vertical lines indicate the percentile boundaries between the 0–10%, 10–20%, etc., centrality intervals.

Photon Pairs analysis Relevant features of the theory predictions

Table 4: Overview of the theory predictions and their relevant features. The label 'QCD res.' ('NP effects') stands for QCD resummation (non-perturbative effects).

	Fixed-order accuracy					Fragmentation		QCD	NP	
	γγ	+1 <i>j</i>	+2 <i>j</i>	+3 <i>j</i>	$+ \ge 4j$	$gg \rightarrow \gamma\gamma$	single	double	res.	effects
DIPHOX	NLO	LO	-	-	-	LO	NLO		. —	.
Nnlojet	NNLO	NLO	LO	-	-	LO	—	_	_	_
Sherpa	NL	0	LO		PS	LO	ME+PS		PS	\checkmark

vere vere

(b) Single- and double-fragmentation photons

(c) Non-prompt photons

(a) Direct photons

Photon Pairs analysis Photon selection

			-	
Selection	Detector level	Particle level	Ŷ	
Photon kinematics	$p_{\mathrm{T},\gamma_{1(2)}} > 40 (30) \mathrm{GeV}$	<i>V</i> , $ \eta_{\gamma} < 2.37$ excluding $1.37 < \eta_{\gamma} < 1.52$		
Photon identification	tight	stable, not from hadron decay		
Photon isolation	$E_{\mathrm{T},\gamma}^{\mathrm{iso},0.2} < 0.05 \cdot p_{\mathrm{T},\gamma}$	$E_{\mathrm{T},\gamma}^{\mathrm{iso,0.2}} < 0.09 \cdot p_{\mathrm{T},\gamma}$		
Diphoton topology	$N_{\gamma} \ge 2, \Delta R_{\gamma\gamma} > 0.4$			

* (Photon kinematics

 $p_{T,\gamma}$ cuts 5 GeV above trigger thresholds — in trigger efficiency plateaus η_{v} cuts to operate in region of high EM Calorimeter granularity && exclude barrel-end-cap transition region

Photon Isolation

Cone of $\Delta R = 0.2$ around photon momentum should not have too much transverse momentum in it (Pile-up and Underlying Event contributions corrected for)

Diphoton topology

 $\Delta R_{_{\rm VV}}$ cut to prevent overlap between photon isolation cones — reduce correlation between photon isolations)

[2107.09330]

Photon Pairs analysis Background estimation

For each process $p \in \{\gamma\gamma, \gamma j, j\gamma, jj, ee, pi|eup\}$, construct the probability $f_{p,i}$ that an event goes into region *i*

$$f_{p,i} = f_{p,i}(\varepsilon_{p,1}^{\text{iso}}, \varepsilon_{p,2}^{\text{iso}}, R_p^{\text{iso}}, \varepsilon_{p,1}^{\text{id}}, \varepsilon_{p,2}^{\text{id}}, R_p^{\text{id}}, R_{p,1}^{\text{iso-id}}, R_{p,2}^{\text{iso-id}})$$

$$= \begin{cases} \varepsilon_{p,1}^{\text{iso}} & \varepsilon_{p,2}^{\text{iso}} & \varepsilon_{p,1}^{\text{id}} & \varepsilon_{p,2}^{\text{id}} & \varepsilon_{p,2}^{\text{id}} & \varepsilon_{p,2}^{\text{id}} & \text{for } i = 1\\ \varepsilon_{p,1}^{\text{iso}} & (1 - \varepsilon_{p,2}^{\text{iso}}) & \varepsilon_{p,2}^{\text{iso}} R_{p,2}^{\text{iso}} & \varepsilon_{p,1}^{\text{id}} & \varepsilon_{p,2}^{\text{id}} & \varepsilon_{p,2}^{\text{id}} & \text{for } i = 2\\ (1 - \varepsilon_{p,1}^{\text{iso}}) & \varepsilon_{p,2}^{\text{iso}} R_{p,2}^{\text{iso}} & \varepsilon_{p,1}^{\text{id}} & \varepsilon_{p,2}^{\text{id}} & \varepsilon_{p,2}^{\text{id$$

$$n_{i}^{\exp} = \frac{n_{\gamma\gamma}}{\varepsilon_{\gamma\gamma,1}^{\operatorname{id}} \varepsilon_{\gamma\gamma,1}^{\operatorname{iso}} \varepsilon_{\gamma\gamma,2}^{\operatorname{id}} \varepsilon_{\gamma\gamma,2}^{\operatorname{iso}}} f_{\gamma\gamma,i} + N_{\gamma j} f_{\gamma j,i} + N_{j\gamma} f_{j\gamma,i} + N_{jj} f_{jj,i} + N_{ee} f_{ee,i} + N_{\mathrm{PU}} f_{\mathrm{PU},i}$$

QCD@Work Ynyr Harris — 27 Jun 2022

[2107.09330]