A journey through the experimental highlights on heavy-ion physics

QCD@Work - International Workshop on QCD -**Theory and Experiment**

27 June 2022 Auditorium del Museo Provinciale "Sigismondo Castromediano" - Lecce (Italy)

Alberto Calivà, University of Salerno and INFN

Istituto Nazionale di Fisica Nucleare **SEZIONE DI NAPOLI** Gruppo Collegato di Salerno

Outline

Heavy quarkonia Heavy flavor Light flavor Direct photons and dileptons

Heavy Quarkonia

$J/\psi R_{AA}$: RHIC vs. LHC

At RHIC:

- \sim R_{AA} of inclusive J/ ψ at mid-rapidity decreases with $\langle N_{part} \rangle$ at RHIC energy
- Almost independent of collision system and energy

creases with (N_{part}) at RHIC energy n and energy

$J/\psi R_{AA}$: RHIC vs. LHC

At RHIC:

- R_{AA} of inclusive J/ ψ at mid-rapidity decreases with $\langle N_{part} \rangle$ at RHIC energy
- Almost independent of collision system and energy

At LHC: in central Pb-Pb collisions ~ 1 $c\overline{c}$ pair per fm³

 \rightarrow enhancemnt of the J/ ψ R_{AA} with $\langle N_{part} \rangle$ as a sign of $c\overline{c}$ recombination

Svetitsky PRD37 (1988) 2484, PBM & Stachel PLB490 (2000) 196, Thews et al PRC63 (2001) C549005, Andronic et al, PLB 652 2007 259

creases with $\langle N_{part} \rangle$ at RHIC energy n and energy

J/V RAA VS. PT

R_{AA} of inclusive J/ψ at LHC:

 \bigcirc

• Rise at low p_{T} (stronger effect at midrapidity): decisive signature of recombination Models that include regeneration (SHMc and TAMU) describe the data at low p_T

J/V RAA VS. PT

 R_{AA} of inclusive J/ ψ at LHC:

 \bigcirc

Rise of R_{AA} at low p_T as an effect of recombination confirmed by prompt J/ ψ > clear centrality dependence

- Rise at low p_{T} (stronger effect at midrapidity): decisive signature of recombination Models that include regeneration (SHMc and TAMU) describe the data at low p_T

Sequential suppression of charmonia

 $\psi(2S)$ measurement extended to $p_T = 0$

Stronger suppression for $\psi(2S)$

 \rightarrow sequential suppression of charmonia

 $\psi(2S)$ R_{AA} increases going to lower p_T

- Qualitatively similar to J/ψ
 - $\rightarrow \psi(2S)$ production via $c\overline{c}$ recombination?

 p_{T} dependence of R_{AA} reproduced by TAMU X. Du and R. Rapp, Nucl. Phys. A943 (2015)

Sequential suppression of bottomonia

Pb-Pb collisions by CMS

Sequential suppression of Y(bb) states Stronger suppression in more central collisions (ATLAS)

J/v elliptic flow at RHIC

Elliptic flow (v₂) of inclusive J/ψ consistent with zero at "forward" and midrapidity

Consistent with picture emerged with RAA at RHIC energy \rightarrow absence of significant $c\overline{c}$ recombination effects \rightarrow v₂ of $c\overline{c} \approx 0$ (early production)

Charmonia v₂: prompt vs. non-prompt

Prompt J/ ψ : Significant v₂ up to high p_T

Non-prompt J/ψ :

- Iower v₂ than prompt J/ψ
- faster decrease with increasing p_{T} \bigcirc

Prompt $\psi(2S) v_2 v_5$. prompt $J/\psi v_2$

Hint of larger v₂ of prompt $\psi(2S)$ wrt prompt J/ψ

 \rightarrow Later regeneration of $\psi(2S)$ than J/ ψ ? arXiv:1504.00670 [hep-ph]

Bottomonium V₂

Elliptic flow of Y(1S) measured both in Pb-Pb and high-multiplicity p-Pb collisions by CMS

> consistent with zero!

 v_2 of b quark $\approx 0 \rightarrow$ insufficient thermalization due to large mass?

Heavy Flavor

Bottom shows less suppression than charm at RHIC

Models give a fairly good description of the data

- all p_T for charm
- $p_T > 4$ GeV/c for **bottom**

R_{AA} of prompt and non-prompt **D**⁰

arXiv:2202.00815 [nucl-ex]

Bottom shows less suppression than charm also at LHC

R_{AA} of prompt and non-prompt D⁰

arXiv:2202.00815 [nucl-ex]

energy loss describe the data within uncertainties

R_{AA} and v₂ of prompt **D**-mesons

Most of the transport models describe both R_{AA} and v₂ > constraint on spatial diffusion coefficients

R_{AA} and v₂ of prompt **D**-mesons

Radiative energy loss important to describe intermediate and high p_{T} > small impact on low p_T region

V₃ of charm and bottom

Charm is sensitive to initial state fluctuations (less than light quarks)

V₃ of charm and bottom

Bottom is less sensitive to initial state fluctuations than charm

- Charm is sensitive to initial state fluctuations (less than light quarks)

Light Flavor

d-d and d-p correlations

First measurement of deuteron-deuteron femstoscopic correlation > consistent with model calculations incorporating nucleon coalescence

d-d and d-p correlations

- First measurement of deuteron-deuteron femstoscopic correlation > consistent with model calculations incorporating nucleon coalescence
- Pearson coefficient of p-d indicates significant anti-correlation in central Au-Au collisions > consistent with afterburner+coalescence and canonical statistical model

Deuteron number fluctuations

New observable based on event-by-event (anti)deuteron fluctuations to distinguish SHM and coalescence

$$\frac{\kappa_2}{\kappa_1} = \frac{\langle (n - \langle n \rangle)^2 \rangle}{\langle n \rangle}$$

Cumulant ratio favors canonical statistical model

Coalescence Model A: full correlation of *p* and *n* Coalescence Model B: independent p and n fluctuations

Correlation volume

arXiv:2204.10166 [nucl-ex]

Pearson correlation $\rho_{\overline{p}\overline{d}}$ clearly indicates a correlation volume for baryon number conservation of 1.6 units of rapidity

Correlation volume

arXiv:2204.10166 [nucl-ex]

Pearson correlation $\rho_{\overline{p}\overline{d}}$ clearly indicates a correlation volume for baryon number conservation of 1.6 units of rapidity

> different from net-proton fluctuation

n results (
$$\Delta y_{\rm corr}$$
 = 5)

Precise µ_B measurement at LHC

New measurement of antimatter/matter imbalance at the LHC

$$\overline{h}/h \propto \exp\left[-2\left(B+\frac{S}{3}\right)\frac{\mu_{B}}{T}-2I_{3}\right]$$

Uncertainties reduced wrt thermal model fit by one order of magnitude > direct cancellation of correlated uncertainties in antimatter-to-matter ratios

Hypernuclei at high µ_B

Lifetimes of Hypernuclei

Lifetime of hypernuclei important to study (low-density limit of) YN interaction

- H
- $^{3}_{\Lambda}$ H lifetime = (256 ± 22 ± 36) ps
- compatible with free Λ lifetime
- Ioosely-bound state

- H
- $^{4}_{\Lambda}$ H lifetime = (222 ± 8 ± 13) ps
- significantly lower than free A
 higher binding energy than hypertriton
- compatible with other measurements

 ϕ/K and ϕ/Ξ : interplay between energy dependence of T and $\mu_{\rm B}$ and canonical suppression

Significant decrease of K*/K vs. multiplicity

 ϕ/K almost flat

- ϕ/K and ϕ/Ξ : interplay between energy dependence
- of T and $\mu_{\rm B}$ and canonical suppression
- Resonance/stable hadron ratios:

Short-lived resonances are useful tools to study hadron gas phase

Short-lived resonances are useful tools to study hadron gas phase

- $\tau_{\rm K^*} = (4.17 \pm 0.04) \text{ fm/c}$ $\tau_{\Lambda*} = (12.6 \pm 0.8) \text{ fm/c}$

Larger suppression for Λ^*/Λ wrt K*/K despite Λ^* has longer lifetime > lifetime is not a good predictor

Phys. Rev. C 102, 024909 (2020)

Direct photons and dileptons

Direct photons at RHIC

Medium temperature with dileptons

extracted (no blue shift) from fit to excess dilepton spectra

- intermediate-mass region (m > m_{ρ}) sensitive to early QGP temperature (~300 MeV) QGP at RHIC is hotter and longer-lived than at SPS

Dilepton spectrum vs. models

Dileptons at the LHC

Dilepton spectrum at LHC consistent with hadronic cocktail + QGP with in-medium ρ

First measurement of direct γ in Pb-Pb at 5.02 TeV: High p_T : prompt photons consistent with pQCD Low p_{T} : data consistent with models containing in addition pre-eq. + thermal photons

Summary

Detailed characterization of QGP properties

have been achieved

Exciting times are ahead re-start of LHC

- SPHENIX at RHIC
- future detectors and upgrades . . .

- In-depth understanding of a large variety of phenomena

Summary

Detailed characterization of QGP properties

have been achieved

Exciting times are ahead re-start of LHC

- SPHENIX at RHIC
- future detectors and upgrades . . .

Thank you for your attention!

- In-depth understanding of a large variety of phenomena

Backup slides

Charmonium suppression

Clear hierarchy of suppression between J/ ψ and ψ (2S) for all centralities.

ALI-PREL-523330

Y (3S) in Pb-Pb collisions

First observation of Y(3S) in PbPb collisions

Signal significance > 5σ

(b \rightarrow) D⁰ v₂ consistent with (b \rightarrow) J/ ψ v₂

Low p_T : Smaller than prompt D⁰ v₂

> Weaker collective motion of bottom than charm

High p_T : v₂ of charm and bottom converge toward similar values

Hypernuclei lifetimes

Precision hypernuclei measurements at BES-II (19.6, 27, FXT 3.0, 7.2 GeV) and top RHIC energy (200 GeV)

3 H Lifetime and B_{Λ}

Hypertriton lifetime and Λ separation energy (B_{Λ}) measured by ALICE > consistent with weakly bound state

ALI-PREL-486370

v₂ of strange hadrons and nuclei

NCQ scaling at higher (m_T-m₀)/n_q

> works better for anti-particles (within 15%) \rightarrow partonic collectivity

Systematic deviation of around 20-30% from mass number scaling observed for all light nuclei species at all measured energies

Direct photons at RHIC

arXiv:2203.17187 [nucl-ex]

Measurement of direct photons using large data sample of Au-Au collisions of 2014

Scaling with multiplicity:
$$\frac{dN_{\gamma}^{dir}}{dy} = A\left(\frac{dN_{\gamma}^{dir}}{dy}\right)$$

 $\lambda \tau \wedge \alpha$ N_{ch} η

 α independent of p_{T}

 v_2 of prompt J/ ψ < v_2 of prompt D-mesons \rightarrow larger fraction of v₂ carried by light quarks (v₂: J/ ψ < D < light hadrons)

Centrality dependence: strong for v₂ vs. weak for v₃ for both D and J/ ψ (sensitivity to initial state fluctuations)

v_n of J/ ψ vs. v_n of D mesons

HF angular correlations

- > probably the effect is more pronounced at lower p_T

Λ_{c}^{+}/D^{0} at forward rapidity

 Λ_c^+/D^0 measured in peripheral (60-90%) Pb-Pb collisions at forward rapidity by LHCb Compatible with p-Pb measurements and Pythia8 + color reconnection effects Overestimated by Statistical Hadronization Model (+ RQM for missing resonances)

 $(\Lambda_{c}^{+}/D^{0})_{LHCb} < (\Lambda_{c}^{+}/D^{0})_{ALICE}$

no hint of Λ_c^+ enhancement going to lower rapidities

LHCb-PAPER-2021-046

 Λ_c^+/D^0 vs. multiplicity: flat and independent on collision system and energy Qualitatively similar trend of Λ/K_s^0 (light-flavor partners)

Λ^+/D^0 at mid-rapidity

RAA and V₂ of charm and bottom

RAA and v2 measured at high pT

Low p_{T}

- RAA of charm < RAA of bottom</p>
- v_2 of charm > v_2 of bottom

At high p_T both R_{AA} and v_2 converge towards similar values

Smaller v_2 observed for $b \rightarrow B^0$ due to larger mass

R_{AA}: PLB 829 (2022) 137077 v₂: PLB 807 (2020) 135595

JHEP 10 (2020) 141

Elliptic flow (v₂) of inclusive J/ψ measured at LHC: significantly > 0 both at forward and midrapidity

v_2 of inclusive J/ ψ < v_2 of prompt D mesons

- is feed-down from B responsible? \bigcirc
- larger fraction of v₂ carried by light quarks? \bigcirc both? \bigcirc

Suppression of Y(3s) vs. Y(2s)

R_{AA} (Y(3s)) / R_{AA} (Y(2s)) ≈ 0.5

 \rightarrow stringent constraint to theoretical models (?)

