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Outline

I Neutron star mergers test the properties of dense matter, e.g.
Equation of State

I Equilibration:
Thermal equilibration — thermal conductivity
Shear flow equilibration — shear viscosity
Flavor equilibration — bulk viscosity
Better than the equation of state for probing phase structure!

I Is bulk viscosity important in mergers?
I How does bulk viscosity arise?
I Bulk viscosity is a resonance
I Damping time for density oscillations
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Conjectured QCD Phase diagram
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heavy ion collisions: deconfinement crossover and chiral critical point
neutron stars: quark matter core?
neutron star mergers: dynamics of warm and dense matter



Grav waves from mergers: prediction

Prediction of gravitational waves is done by intense numerical
computation



Grav waves from mergers: observation

LIGO Data from the event GW170817

With LIGO we only see the inspiral, not the merger itself.



Neutron star mergers
Mergers probe the properties of nuclear/quark matter
at high density (up to ≥ 4n

sat

) and temperature (up to ≥ 60 MeV)
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If we want to use
mergers to learn about
nuclear matter, we need
to include all the
relevant physics in our
simulations.



Using grav waves to probe dense matter
Current simulations try to connect the gravitational wave signal with
features of the Equation of State, such as a first-order phase
transition:
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Nuclear material in a neutron star merger

M. Hanauske, Rezzolla group, Frankfurt

Significant spatial/temporal variation in: so we need to allow for
temperature thermal conductivity
fluid flow velocity shear viscosity
density bulk viscosity



Non-equilibrium physics in mergers

The important dissipation mechanisms are the
ones whose equilibration time is . 20 ms

I Thermal equilibration: If neutrinos are trapped, and there are
short-distance temperature gradients, then thermal transport might
be fast enough to play a role.
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I Shear flow equilibration: similar conclusion.
(related to shear viscosity)

I Flavor equilibration: could influence the merger’s evolution.
(related to bulk viscosity)



Density oscillations in mergers

Density vs time for tracers in merger
Bulk viscosity neglected
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Tracers (co-moving fluid
elements) show dramatic
density oscillations,
especially in the first 5 ms.
Amplitude: up to 50%
Period: 1–2 ms

What gets driven out of equilibrium?



Density oscillations and beta equilibration
Density oscillations lead to departure from flavor equilibrium (proton
fraction).

When you compress nuclear matter,
the proton fraction wants to change.

Only the weak interaction can change proton fraction;
It operates on a macroscopic time scale, comparable to the merger
(≥ ms)
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Flavor equilibration and bulk viscosity

I The finite rate of flavor equilibration via the weak interaction could
be important for merger dynamics.

I Relaxation to flavor equilibrium will lead to bulk viscosity and
damping of the density oscillations.

I How long does it take for bulk viscosity to dissipate a sizeable
fraction of the energy of a density oscillation?

What is the damping time ·’

for density oscillations?



Density oscillation damping time ·’

Density oscillation of amplitude �n at angular freq Ê:
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Damping time calculation (‹-transparent)

Damping time:

·’ = Kn̄

9Ê2 ’

Damping can be fast enough
to a�ect merger dynamics!

I Damping gets slower at higher density.
Baryon density n̄ and incompressibility K are both increasing.
Oscillations carry more energy ∆ slower to damp

I
Non-monotonic T -dependence: damping is fastest at T ≥ 3 MeV.
Damping is slow at very low or very high temperature.

Non-monotonic dependence of bulk viscosity on temperature
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Bulk viscosity: phase lag in system response
Some property of the material (proton fraction) takes time to
equilibrate.
Baryon density n and hence fluid element volume V gets out of phase
with applied pressure P :

Dissipation = ≠
⁄

P dV = ≠
⁄

P

dV

dt

dt

No phase lag.
Dissipation = 0

Some phase lag.
Dissipation > 0
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Bulk viscosity: a resonant phenomenon
Bulk viscosity is maximum when

(internal equilibration rate)
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I Fast equilibration: “ æ Œ ∆ ’ æ 0
System is always in equilibrium. No pressure-density phase lag.

I Slow equilibration: “ æ 0 ∆ ’ æ 0.
System does not try to equilibrate: proton number and neutron
number are both conserved. Proton fraction fixed.

I Maximum phase lag when Ê = “.
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Resonant peak in bulk viscosity

We now see why bulk visc is a non-monotonic fn of temperature.

’(T ) = C

“(T )
“(T )2 + Ê2

Beta equilibration rate “ rises with temperature
(phase space at Fermi surface)
Maximum bulk viscosity in a neutron star merger will be when
equilibration rate matches typical compression frequency f ¥ 1 kHz.
I.e. when “ ≥ 2fi ◊ 1 kHz
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Two di�erent EoSes

The damping time for density oscillations is shortest around
T ≥ 3 MeV, independent of the EoS.

It is short enough to be relevant for mergers,
especially at low density.



The �hot� (neutrino-trapped) regime
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Beta equilibration now
includes neutrinos in the
initial state too:
‹e + n ¡ p + e

≠

Bulk viscosity is lower in hot matter (T & 5 MeV).
I — equilibration is too fast, above resonant temperature, because

there so much phase space at the Fermi surfaces
I The relevant susceptibilities are smaller, so the peak bulk visc is

smaller



Summary

I Neutron star mergers probe the dynamical response of high-density
matter, including dissipation properties.

I Thermal conductivity and shear viscosity may become significant in
the neutrino-trapped regime (T & 5 MeV) if there are fine-scale
gradients (z . 100 m).

I In neutrino-transparent nuclear matter (at low density and
T ≥ 3 MeV) beta equilibration occurs on the timescale of the
merger. So, for example, bulk viscosity may damp density
oscillations.

I Under these conditions, the Fermi Surface approximation and
detailed balance are not valid.
Rate calculations must include the whole phase space.



Next steps

I Include beta equilibration / bulk viscosity in merger simulations.
I Do better calculations of beta equilibration rates in warm

(T ≥ MeV) nuclear matter
I Calculate beta equilibration rates for other forms of matter:

hyperonic, pion condensed, nuclear pasta, quark matter, etc
I Other manifestations? (Heating, neutrino emission,. . .)
I Beyond Standard Model physics?



Influence of beta equilibration on
gravitational wave signal

Most, Haber, Harris, Zhang, Alford, Noronha, in progress
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Cooling by axion emission
Time for a hot region to cool to half its original temperature:
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Extra slides



Urca processes
We will focus on the neutrino-transparent regime, T . 5 MeV

Direct Urca Modified Urca
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direct Urca only occurs above
direct Urca threshold density



Higher frequency oscillations

If 3 kHz oscillations occur then they would be damped even faster.

Note that max damping occurs at a slightly higher temperature, to get
the beta equilibration rate to match the higher oscillation frequency.



Fermi Surface approximation

If the temperature is low enough, we can analyse beta equilibration
processes in a simple way using the Fermi Surface (FS) approximation.
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In the FS approximation, all the particles participating in beta
equilibration processes are close to their Fermi surfaces.



Urca in the cold regime

So in the cold regime, T π 1 MeV, the picture is
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Is this picture still valid at merger temperatures: T = 1 to 100 MeV?



Temperature regimes
for neutron stars

100.1 10.01 100 (MeV)
T

neutron stars mergers

FS approx valid 

neutrino transparent

I Cold (T π 1 MeV): Fermi Surface approx is valid, and neutrinos
escape.

I Warm (1 MeV . T . 5 MeV): Fermi Surface approx is not
accurate, but neutrinos still escape

I Hot (T & 5 MeV): Fermi Surface approx is not accurate, neutrinos
are trapped.



The �warm� regime:
Beyond the Fermi Surface approx

IUFSU EoS: T = 4 MeV

n ↔ p rate
(exact)

n ↔ p rate
(FS approx)
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At T & 1 MeV the proton Fermi
surface is su�ciently thermally
blurred to smooth out the
switch-on of direct Urca.
This is why the direct Urca
threshold is not clearly visible in
the contour plots of the
dissipation time.



When can direct Urca happen?
n æ p e

≠ ‹̄e , p e

≠ æ n ‹e

Low density
Low proton fraction
Direct Urca closed
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because pFn < pFp + pFe



Neutrino mean free path
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When does neutrino trap-
ping begin?
mfp ≥ 3 km: T= 2-3 MeV
mfp ≥ 1 km: T= 4-5 MeV
mfp ≥ 0.3 km: T= 6-7 MeV



Why is resonance with 1 kHz at T ≥ MeV?
Let’s estimate “(T ) and see when it is 2fi ◊ 1 kHz.

dna
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Solve for when “ = 2fi ◊ 1 kHz = 4 ◊ 10≠18 MeV:
T ≥ 1 MeV



�Cold� beta equilibrium
In the cold regime, beta equilibrium means µn = µp + µe

Electrical neutrality means np = ne ∆ pFp = pFe
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�Cold� beta equilibrium
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• Choose proton density pFp.

This fixes µp and pFe = pFp

• Superimpose electron
dispersion relation with energy
zero at µp: this automatically
adds µe to µp to give the
beta-equilibrated value of µn.

• From µn we get pFn which
fixes the neutron density.

Now, what happens if we compress this —-equilibrated nuclear matter?
Does the proton fraction need to change?



Compressing nuclear matter
Suppose we compress —-equilibrated nuclear matter by a factor of 2.

All Fermi momenta rise by 26% (2(1/3) = 1.26).
Is the matter still in — equilibrium?

• pFp rises by 26%. µp hardly
changes.

• pFe rises by 26%. Superimpose
electron dispersion relation with
energy zero at new µp. Read o�
new —-equilibrated value of
µn = µp + µe

• But actually pFn rose by 26%,
giving actual new µn: larger than
the —-equilibrated value.

After compression the system is out of — equilibrium; µn ≠ µp ≠ µe > 0
There are too many neutrons: proton fraction x needs to rise.
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Nuclear material constituents

Fermi
surfaces:

electrons
neutrinos,

T vF

if
T

thermal blurring

5 MeV

neutrons protons

neutrons: ≥ 90% of baryons pFn ≥ 350 MeV
protons: ≥ 10% of baryons pFp ≥ 150 MeV

electrons: same density as protons pFe = pFp

neutrinos: only present if mfp π 10 km i.e. when T & 5 MeV



Bulk viscosity and beta equilibration
When you compress nuclear matter, the proton
fraction wants to change.

Only weak interactions can change proton fraction
en

n e
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neutrino-transparent neutrino-trapped
(T . 5 MeV)ú (T & 5 MeV)ú

neutron decay n æ p + e

≠ + ‹̄e ‹e + n æ p + e

≠

electron capture p + e

≠ æ n + ‹e p + e

≠ æ n + ‹e
forward ”= backward A + B ¡ C + D

ú Neutrino transparency is a finite volume e�ect, which occurs when the neutrino
mean free path is greater than the size of the system. Our system is a neutron star,
R ≥ 10 km


