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Why to study the electromagnetic conductivity of quark-gluon matter?

The e.m. conductivity is a transport coefficient which parametrizes the charge transport phenomena. 

Its computation is challenging from a phenomenological point of view since in heavy-ion collision experiments 
large electric and magnetic fields ( ) are generated and this influences the dynamics of the QGP. ∼ m2

π

Furthermore it’s known that the QGP generated during these collisions has nonzero baryon density (small for 
LHC and RHIC experiments while large for FAIR and NICA experiments).

Thus, it could be important to study how nonzero baryon density influences the e.m. 
conductivity of QGP

In an incoming paper, we made its first lattice QCD study at finite baryon density.
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Lattice Setup

We used  dynamical staggered quarks at 
physical quark masses with chemical potentials 


Nf = 2 + 1

μu = μd = μB/3, μs = 0.

The introduction of a nonzero baryon density leads to the sign 
problem. Thus, we used imaginary baryon chemical potential 

for different values.

We considered two values of the temperature  and most of the simulations are carried out on a  
lattice with lattice spacings  while to check the lattice spacing dependence we also considered a  

 lattice with  and .

T = 200, 250MeV 12 × 483

a = 0.0820,0.0657 fm
10 × 483 a = 0.0988 fm a = 0.0788 fm
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To measure the conductivity we 
went trough two principal steps

Step 1: the measure of the correlation functions

Step 2: spectral function extraction and conductivity 
computation via Kubo formulas



The strategy: step 1

The first step consists in the computation on the lattice of the correlation function

Cij(τ) =
1
L3

s
⟨Ji(τ)Jj(0)⟩

where  is the Euclidean time and  is the conserved currentτ Ji(τ)

Ji(τ) =
1
4

e∑
f

qf ∑⃗
x

ηi(x)(χ̄ f
xeaμf δν,4U(2)

x,i χ f
x+i + χ̄ f

xe−aμf δν,4U(2)†
x,i χ f

x+i) where 
 and i=1,2,3

ηi(x) = (−1)x1+...xi−1

x = (τ, ⃗x )

 are staggered fermion 
fields of f=u,d,s flavours.

χ̄ f
x, χ f

x

This correlator correspond to two different operators for the even  and odd  slices. In the continuum 
limit it reads

τ = 2n × a τ = (2n + 1) × a

Ce,o
ij (τ) = ∑⃗

x
(⟨Ai(x)Aj(0)⟩ − se,o⟨Bi(x)Bj(0)⟩)

Bi = e∑
f

qf ψ̄ f γ5γ4γiψ f
corresponding to the 

electromagnetic current in the continuum limit

Ai = e∑
f

qf ψ̄ f γiψ f

se,o = (−1)τ
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chemical potential



The strategy: step 1

The figure shows an example of the result we 
obtain for a correlation function at nonzero 

imaginary chemical potential.

The correlator is symmetric and then we’ll use only 
one independent side averaging the symmetric 

partners. Furthermore, the analysis is made 
independently for the even and odd values of the 

Euclidean time.
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The strategy: step 2

The current-current Euclidean correlators both for even and odd slices  are related to their spectral functions  asCe,o
ij ρe,o

ij (ω)

Ce,o
ij (τ) = ∫

∞

0

dω
π

K(τ, ω)ρe,o
ij (ω) where K(τ, ω) =

cosh ω(τ − β/2)
sinh ωβ/2

If we are able to invert this relation and then extract  from the correlators, we can compute the electromagnetic conductivity   by 
using the Kubo formulas

ρe,o
ij (ω) σij

σij

T
=

1
2T

lim
ω→0

1
ω (ρe

ij(ω) + ρo
ij(ω))

The problem of the inversion of the correlation function to extract the spectral function is well known in literature.

Having computed the correlators for all the lattice spacing for the even and odd slices, we can study the conductivity.

How?
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Then, how can we invert this relation?



Inverse problem

The idea is to search for a smearing function that lives in the space spanned by the basis functions K(τ, ω)

δ(ω̄, ω) = ∑
i

qi(ω̄)K(τi, ω)

in such a way that once the coefficients  are known we can extract the smeared spectral density asqi(ω̄)

̂ρ(ω̄) = ∫
∞

0
dωρ(ω)δ(ω̄, ω) = ∑

i

qi(ω̄)C(τi) .

But how do we fix the coefficients ?qi(ω̄)
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In our work we mainly used the Backus-Gilbert method [G. Backus and F. Gilbert, Geophysical Journal International 16, 169 (1968)] and a 
modified version of it recently proposed in [M. Hansen, A. Lupo, and N. Tantalo, Physical Review D 99 (2019)].

We also used the so called Tikhonov regularization approach [A. N. Tikhonov, Soviet Math. Dokl. 4, 1035 (1963)] and the results are 
very similar to the ones obtained using the BG approach.

Thus, in our discussion we’ll focus on the BG method!



Inverse problem: Backus-Gilbert (BG) method
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In the case of the Backus Gilbert method, to fix the coefficients the idea is to introduce the functional 

W[λ, q] = (1 − λ)A[q] + λB[q]
, being  the covariance 

matrix of the correlators. It takes into account 
the fact that the correlators have uncertainties.

B[q] = qTCovq Cov that 

measures the width of the smearing 
function.

A[q] = ∫
∞

0
dω(ω − ω̄)2{δ(ω̄, ω)}2

By minimizing it and imposing the unit area constraint, , we can extract 

an expression for the coefficients 
∫

∞

0
dωδ(ω̄, ω) = 1

Ri = ∫
∞

0
dωK(τi, ω)

q(ω̄, λ) =
W−1(λ, ω̄)R

RTW−1(λ, ω̄)R
, being  Wij(λ, ω̄) = (1 − λ)Aij + λCovij

Aij(ω̄) = ∫
∞

0
dω(ω − ω̄)2K(τi, ω)K(τj, ω)

 is a tradeoff between the systematic error (related to the width of the smearing) and the statistic one.λ ∈ [0,1]

through which we can extract the smearing function.



Inverse problem: Backus-Gilbert (BG) method
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We look at spectral function for different values of the  parameter and then 
choose the value in correspondence of the first point (starting from larger 

values of ) in which a plateau, namely the region where the value stabilizes 
inside the errors, begins.

λ

λ

Thus, fixed , this allows us to extract the smearing function and then the value of 
the spectral function in the generic point :

λ
ω̄

̂ρλ(ω̄) = ∑
i

qi(ω̄, λ)C(τi)

But how do we fix ?λ

Once we fixed  we can extract the value of the spectral function in the 
unknown point .

λ
ω̄



Inverse problem: the modified Backus-Gilbert (BG) method

In the case of the modified BG the main difference is the change of the choice of the first term of the functional
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A[q] = ∫
∞

0
dω(ω − ω̄)2{δ(ω̄, ω)}2 A[q] = ∫ dωρ(ω)(δ(ω, ω̄) − δ0(ω, ω̄))2

The idea is that instead of minimizing the width of the smearing, we minimize the deviation from a reference chosen function .δ0(ω, ω̄)

This leads to an analogous expression for the coefficients

.


where  will be fixed with the same strategy as before.

̂ρλ(ω̄) = ∑
i

qi(ω̄, λ)C(τi)

λ

Here we’ll have a new uncertainty which results from the deviation of the 
resolution function  from the target one  that can be 

computed as
δ(ω, ω̄) δ0(ω, ω̄)

Δsyst = |r | ρ̄(ω̄)

where  is the relative deviation at the peak.r = 1 −
δ(ω̄, ω̄)
δ0(ω̄, ω̄)



Results

Note that the calculation is hindered by large UV contribution of . One could subtract those contributions from 
the correlation function. However this leads to large uncertainties.

ρ(ω)

We considered instead of the correlation function at nonzero chemical potential , the difference Ce,o
μI

ΔCe,o = Ce,o
μI

− Ce,o
μI=0

In fact, for the chosen lattice spacings the UV regime starts around  and  for frequencies in the UV 
regime and baryon chemical potential. Thus, one can consider the UV spectral function independent on the imaginary 

chemical potential and assume that  does not contain UV contributions.

ω ∼ 2GeV μI ≪ ω

ΔCe,o

Thus, by applying the inversion methods on the difference of the correlators separately for the even and odd slices, we can 
extract the spectral functions  independent from UV contributions. By summing them,  we can finally extract the 

conductivity  using the Kubo formula


.

Δρe,o

Δσ
Δσij

T
=

1
2T

lim
ω→0

1
ω (Δρe

ij(ω) + Δρo
ij(ω))
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Results

Backus-
Gilbert 

(Tikhonov) 
approach 

results

Modified 
Backus-
Gilbert 

approach 
results
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In Figure we show the change of the e.m. conductivity  as a function of imaginary chemical potential.Δσ = σμI
− σμI=0



Results interpretation

The results obtained using the different methods are compatible.

The results are well described by the quadratic polynomial the we analytically continue to the real chemical potential

Δσ
TCem

= − c(T )( μI

T )
2 Δσ

TCem
= c(T )( μB

T )
2

- We don’t see a noticeable dependence on the lattice spacing;


- The values of the coefficients obtained for the different methods are compatible. This is probably because the smearing 
functions used are all very similar (close widths);


- The temperature dependence of the  is within the uncertainties. Thus, we don’t see a dependence of the coefficients 
on the temperature;


-The coefficients for all the lattice parameters are positive and so the conclusion is that real baryon density enhances the 
e.m. conductivity.

c(T )
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By looking at the results of the fit showed in the table we can make the following observations:



Conclusions and Outlook
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We studied the electromagnetic conductivity in dense quark-gluon plasma obtained within lattice simulations with  
dynamical quarks.

Nf = 2 + 1

The simulations were performed at imaginary chemical potential and to reconstruct the e.m. conductivity we employed the 
Backus-Gilbert method, both in the normal and modified versions, and the Tikhonov regularization method.

Our results were analytically continued to real values of baryon chemical potential.

The study indicates that e.m. conductivity of QGP raises with real baryon density and this dependence is quite strong.

We are concluding the study of the e.m. conductivity also in presence of strong magnetic fields ( ) for 
different values of the temperature.

eB ∼ 4, 9 GeV2

We plan to show and discuss these results very early in the future.

See Lorenzo Maio’s talk



The end

Thanks for your attention!
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Back-up slides
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Lattice Setup details
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Chemical potentials  are coupled to quark number operators, , in a setup for which  μf ( f = u, d, s) 𝒵(T, μu, μd, μs)

The path integral formulation , discretized via improved rooted staggered fermions and using exponentiated 
implementation of the chemical potentials, reads

𝒵(T, μB)

μu = μd = μB/3, μs = 0

𝒵(T, μB) = ∫ 𝒟Ue−SYM ∏
f=u,d,s

det [Mf
st(U . uf)]1/4

where 

SYM = −
β
3 ∑

i,μ≠ν
(5

6
W1×1

i;μ,ν −
1
12

W1×2
i;μν )

is the Symanzik improved action and the staggered fermion matrix is defined as 

Mf
st(U, μf ) = amf δi,j +

4

∑
ν=1

ηi;ν

2
[eaμf δν,4U(2)

i;ν δi,j− ̂ν − e−aμf δν,4U†
i− ̂ν;νδi,j+ ̂ν]
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Backus-Gilbert (BG) method without regularization

The naivest way we can think is to fix them such that the smearing function is as more peaked as possible. Then, we could fix the 
coefficients by minimizing the deterministic functional

A[q] = ∫
∞

0
dω(ω − ω̄)2{δ(ω̄, ω)}2

that can be interpreted as a measure of the width of the smearing function.

Minimizing the functional by imposing the unit area constraint, namely , we can extract an expression for the 

coefficients 
∫

∞

0
dωδ(ω̄, ω) = 1

q(ω̄) =
A−1(ω̄)R

RT A−1(ω̄)R
Aij(ω̄) = ∫

∞

0
dω(ω − ω̄)2K(τi, ω)K(τj, ω) Ri = ∫

∞

0
dωK(τi, ω)

This would allow us to compute the smeared spectral function in the point  by using the relation .ω̄ ̂ρ(ω̄) = ∑
i

qi(ω̄)C(τi)



Backus-Gilbert (BG) method without regularization
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Note that the coefficients only depend on the point  where we want extract information and on the Euclidean time. Obviously the 
more point we have the tighter will be the smearing function .

ω̄
δ(ω̄, ω)

We show the smearing functions for different values 
of the point  in correspondence of which we want 
to extrapolate and for different number of points .

ω̄
Nt

At fixed , the smearing becomes more similar to a 
Dirac-  function increasing . This is due to the 

fact that, in absence of the second term, the 
functional tends to reduce the width of the 

smearing function as much as possible: 

ω̄
δ Nt

lim
Nt→∞

Δ(ω, ω̄) = δ(ω − ω̄) .



Backus-Gilbert (BG) method without regularization
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However there is a problem. In fact in the real case, where the correlators are affected by uncertainties, if the width of the smearing 
function is too small then the method becomes unstable and susceptible to noise in the data.

In fact when  becomes large, then also the coefficients become large and oscillating.Nt

Thus, if we consider the errors associated to the correlators , we obtain that C(ti)

∑
i

gi(ω̄)(C(τi) + δC(τi)) = ̂ρ(ω̄) + ∑
i

gi(ω̄)δC(τi)

Being the coefficients  large, also this term 
will be large and then the final error will be 

unacceptably large.

gi

For this reason, we need to add the second 
term in the expression of the functional to 
take into account that we want a balance 

also with the statistical uncertainties.



Tikhonov regularization method
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While in the in the BG method we add the second term that takes into account uncertainties in the TR scheme it’s regularized the 
Singular Value Decomposition (SVD) of 

A−1 = VDUT

The diagonal matrice  might have large entries that represent the susceptibility of the data to noise.D = diag(σ−1
1 , σ−1

2 , . . . , σ−1
n )

Thus, the regularization is done by adding the regularizer  to all the entries as  γ

D̃ = diag((σ1γ)−1, (σ2 + γ)−1, . . . , (σn + γ)−1)

In this way, small  will be smoothly cut-off.σi

Tikhonov regularization method



Extrapolation of  for ρ(ω)/ω ω → 0
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σij

T
=

1
2T

lim
ω→0

1
ω (ρe

ij(ω) + ρo
ij(ω))

For the Kubo formula

we want to compute the ratio of the  for .ρ(ω)/ω ω → 0

We directly extract it by using the BG method. In fact, we have that 

Ce,o
ij (τ) = ∫

∞

0

dω
π

K(τ, ω)ρe,o
ij (ω) = ∫

∞

0

dω
π

K̃(τ, ω)
ρe,o

ij (ω)
ω

K̃(τ, ω) = ω
cosh ω(τ − β/2)

sinh ωβ/2

In this way, we can find the smeared spectral function as

̂ρλ(ω̄) = ω̄∑
i

qi(ω̄, λ)C(τi)

Fixing , this allows us to directly extract  for .ω̄ = 0 ρ(ω)/ω ω → 0



Uncertainties treatment
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To treat the statistical uncertainties, we made a binned bootstrap analysis.

We produced a number of new correlators samples by resampling the original sample. For each sample, we carried the analysis 
arriving at the final determination of the even and odd spectral functions and of the value of the conductivity. Then, we estimated the 

statistical error on the conductivity by monitoring it fluctuation over the different bootstrap samples.

In the error bar we reported, in the case of the modified BG, also the systematic error for both even and odd spectral function by using 
the definition 

Δsyst = |r | ρ̄(ω̄)

where  is the relative deviation at the peak.r = 1 −
δ(ω̄, ω̄)
δ0(ω̄, ω̄)

When we summed the even and odd spectral functions to obtain the conductivity, we also summed in modulus the systematic errors. 
Then, we summed in modulus the final value of the systematic error to the statistical uncertainty coming from the bootstrap analysis.



Backus Gilbert VS Modified Backus Gilbert
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The Backus-Gilbert, such as the Tikhonov regularization procedure, has three main problems: 


- The resolution function depends on the lattice data and then it’s non strictly correct to compare the spectral functions obtained at 
different lattice spacings;


- There is a systematic uncertainty related to the choice of the parameter  which is difficult to estimate;


- The resolution function in the BG approach is not a simple Ansatz, but it’s an output of the method. This complicates the 
comparison of the obtained results with different models. 


λ

These problems can be solved within the modified approach that also allow us to fix a common target function for different lattice 
spacings. This allows us also to perform the continuum limit.



