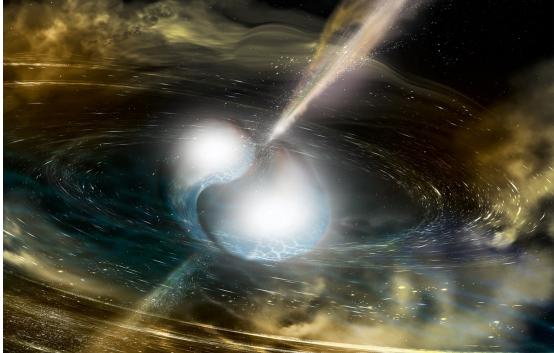
Topology's Role in the Feasibility of a Neutron Star's Matter Phase



Vivian de la Incera

University of Texas Rio Grande Valley

QCD @ Work Lecce, Italy, June 27-30, 2022

- 2203.14209 Will Gyory and VI
- Universe 7, 458, 2021 E.J. Ferrer and VI
- PRD 103, 123013, 2021 E.J. Ferrer, VI, and P. Sanson
- PRD 102, 014010, 2020 E.J. Ferrer and VI
- NPB 931,192, 2018 E.J. Ferrer and VI
- PRD 92, 105018, 2015 S. Carignano, E.J. Ferrer, VI, L. Paulucci

- 2203.14209 Will Gyory and VI
- Universe 7, 458, 2021 E.J. Ferrer and VI
- PRD 103, 123013, 2021 E.J. Ferrer, VI, and P. Sanson
- PRD 102, 014010, 2020 E.J. Ferrer and VI
- NPB 931,192, 2018 E.J. Ferrer and VI
- PRD 92, 105018, 2015 S. Carignano, E.J. Ferrer, VI, L. Paulucci

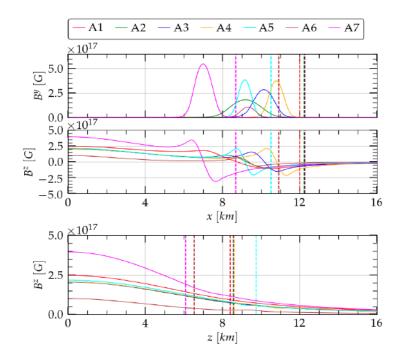
 \checkmark Compatible with NS's densities and temperatures

- 2203.14209 Will Gyory and VI
- Universe 7, 458, 2021 E.J. Ferrer and VI
- PRD 103, 123013, 2021 E.J. Ferrer, VI, and P. Sanson
- PRD 102, 014010, 2020 E.J. Ferrer and VI
- NPB 931,192, 2018 E.J. Ferrer and VI
- PRD 92, 105018, 2015 S. Carignano, E.J. Ferrer, VI, L. Paulucci
- \checkmark Compatible with NS's densities and temperatures
- \checkmark Stable against fluctuations at relatively high T

- 2203.14209 Will Gyory and VI
- Universe 7, 458, 2021 E.J. Ferrer and VI
- PRD 103, 123013, 2021 E.J. Ferrer, VI, and P. Sanson
- PRD 102, 014010, 2020 E.J. Ferrer and VI
- NPB 931,192, 2018 E.J. Ferrer and VI
- PRD 92, 105018, 2015 S. Carignano, E.J. Ferrer, VI, L. Paulucci
- \checkmark Compatible with NS's densities and temperatures
- \checkmark Stable against fluctuations at relatively high T
- \checkmark Consistent with observed NS heat capacity limit

- 2203.14209 Will Gyory and VI
- Universe 7, 458, 2021 E.J. Ferrer and VI
- PRD 103, 123013, 2021 E.J. Ferrer, VI, and P. Sanson
- PRD 102, 014010, 2020 E.J. Ferrer and VI
- NPB 931,192, 2018 E.J. Ferrer and VI
- PRD 92, 105018, 2015 S. Carignano, E.J. Ferrer, VI, L. Paulucci
- \checkmark Compatible with NS's densities and temperatures
- \checkmark Stable against fluctuations at relatively high T
- \checkmark Consistent with observed NS heat capacity limit
- \checkmark Compatible with 2 M_{\odot}

- 2203.14209 Will Gyory and VI
- Universe 7, 458, 2021 E.J. Ferrer and VI
- PRD 103, 123013, 2021 E.J. Ferrer, VI, and P. Sanson
- PRD 102, 014010, 2020 E.J. Ferrer and VI
- NPB 931,192, 2018 E.J. Ferrer and VI
- PRD 92, 105018, 2015 S. Carignano, E.J. Ferrer, VI, L. Paulucci
- \checkmark Compatible with NS's densities and temperatures
- \checkmark Stable against fluctuations at relatively high T
- \checkmark Consistent with observed NS heat capacity limit
- \checkmark Compatible with 2 M_{\odot}
- ✓ A candidate for transient NS in BNS Mergers?



$$l_m = 7 \times 10^9 (n_e/n_s) / B^{*2} fm, \qquad B^* = B / B_e^c, \qquad R \gg l_m$$

GRMHD simulations of magnetars' field evolution leads to several times 10^{17} G for B_z at the core

Tsokaros, Ruiz, Shapiro, & Uryu, PRL 128, 2022

Magnetars: Core: B < 8 x10¹⁸ G

Cardall, Prakash, and Lattimer, ApJ 554, 2001

Then, for magnetars surface: $B \sim 10^{15}G$ core $B \sim 10^{17}$ - $10^{18}G$

B can be considered uniform and constant as far as effects on the EOS *Broderick, Prakash, and Lattimer, ApJ* 537, 2000

Magnetic Dual Chiral Density Wave Model

2-flavor NJL model at finite baryon density and with magnetic field B|| z

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} [i\gamma^{\mu} (\partial_{\mu} + iQA_{\mu}) + \gamma_0 \mu] \psi + G[(\bar{\psi}\psi)^2 + (\bar{\psi}i\tau\gamma_5\psi)^2].$$

It favors the formation of an inhomogeneous chiral condensate

$$\langle \bar{\psi}\psi\rangle = \Delta \cos q_{\mu}x^{\mu}, \qquad \langle \bar{\psi}i\tau_{3}\gamma_{5}\psi\rangle = \Delta \sin q_{\mu}x^{\mu} \qquad q^{\mu} = (0, 0, 0, q)$$

Mean-field Lagrangian

$$\mathcal{L}_{MF} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}[i\gamma^{\mu}(\partial_{\mu} - i\mu\delta_{\mu0} + iQA_{\mu} - i\tau_{3}\gamma_{5}\delta_{\mu3}\frac{q}{2}) - m]\psi - \frac{m^{2}}{4G}$$

$$E_0=\epsilon\sqrt{m^2+k_3^2}+b,~~\epsilon=\pm,~~b=q/2,~$$
 LLL mode is Asymmetric!

$$E_k^{l>0} = \epsilon \sqrt{(\xi \sqrt{\Delta^2 + k_3^2} + q/2)^2 + 2e|B|l}, \quad \epsilon = \pm, \xi = \pm, l = 1, 2, 3, \dots$$

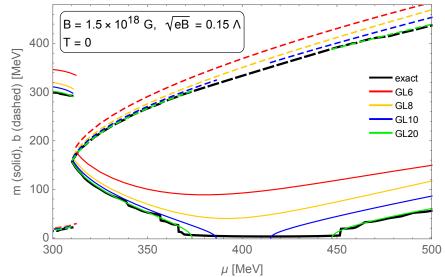
Nontrivial Topology of the MDCDW Phase $\Omega = \Omega_{vac}(B) + \Omega_{anom}(B,\mu) + \Omega_{\mu}(B,\mu) + \Omega_{T}(B,\mu,T) + \frac{m^{2}}{4G}.$

$$\begin{split} \Omega^{f}_{vac} &= \frac{1}{4\sqrt{\pi}} \frac{N_{c} |e_{f}B|}{(2\pi)^{2}} \int_{-\infty}^{+\infty} dk \sum_{\ell \xi \epsilon} \int_{1/\Lambda^{2}}^{\infty} \frac{ds}{s^{3/2}} e^{-s(E_{\ell})^{2}} \\ \Omega^{f}_{anom} &= -\frac{N_{c} |e_{f}B|}{(2\pi)^{2}} 2b\mu \\ \text{Anomalous term due to the LLL spectral asymmetry. It leads to anomalous baryon number} \\ \Omega^{f}_{\mu} &= -\frac{N_{c} |e_{f}B|}{(2\pi)^{2}} \int_{-\infty}^{+\infty} dk \sum_{\xi,\ell>0} \left[(\mu - E_{\ell})\theta(\mu - E_{\ell}) \right] \Big|_{\epsilon=+} + \Omega^{f,LLL}_{\mu} \\ \Omega^{f}_{T} &= -\frac{N_{c} |e_{f}B|}{(2\pi)^{2}} \frac{1}{\beta} \int_{-\infty}^{+\infty} dk \sum_{\ell \xi \epsilon} \ln \left(1 + e^{-\beta|E_{\ell}-\mu|} \right) \\ \Omega^{f,LLL}_{\mu} &= -\frac{1}{2} \frac{N_{c} |e_{f}B|}{(2\pi)^{2}} \int_{-\infty}^{+\infty} dk \sum_{\epsilon} \left(|E_{0} - \mu| - |E_{0}|)_{reg} \,, \end{split}$$

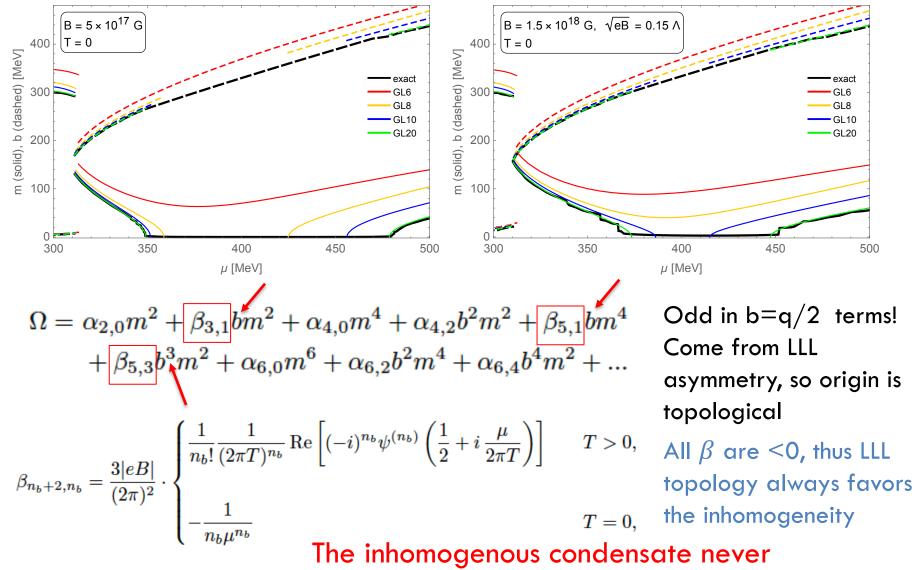
$$\begin{split} & \prod_{a_{2,0}} m^{2} + \beta_{3,1} bm^{2} + \alpha_{4,0} m^{4} + \alpha_{4,2} b^{2} m^{2} + \beta_{5,1} bm^{4} \\ & + \beta_{5,3} b^{3} m^{2} + \alpha_{6,0} m^{6} + \alpha_{6,2} b^{2} m^{4} + \alpha_{6,4} b^{4} m^{2}. \end{split}$$ $& \alpha_{n_{b}+2,n_{b}} \sim \frac{\delta_{0,n_{b}}}{4G} + \sum_{j=0,2,4,\dots} |eB|^{j} \frac{B_{j}}{j!} \cdot \frac{1+2^{j}}{2\pi^{2}3^{j-1}} \cdot \frac{1}{(n_{b}-1)!!} I_{n_{b}+2j-2}(\mu,T) \qquad \beta_{n_{b}+2,n_{b}} = \frac{3|eB|}{(2\pi)^{2}} \cdot \begin{cases} \frac{1}{n_{b}!} \frac{1}{(2\pi T)^{n_{b}}} \operatorname{Re}\left[(-i)^{n_{b}} \psi^{(n_{b})}\left(\frac{1}{2}+i\frac{\mu}{2\pi T}\right)\right] & T > 0, \\ \frac{1}{(n_{b}-1)!!} I_{-2}(\mu,T) = -\frac{1}{4}\Lambda^{2} + \frac{1}{2}\mu^{2} + \frac{\pi^{2}}{3}T^{2} & T = 0, \end{cases}$

$$I_{p>0}(\mu, T) = -\frac{1}{p} \left(\frac{i\sqrt{2}}{\Lambda} \right)^p - \frac{1}{p!!} \left\{ \frac{1}{(2\pi T)^p} \operatorname{Re} \left[(-i)^p \psi^{(p)} \left(\frac{1}{2} + i \frac{\mu}{2\pi T} \right) \right] \right\}$$

Arbitrarily high-order coefficients can be quickly calculated allowing much higher precision results than previous works



Topology Yields Extraordinary Robustness

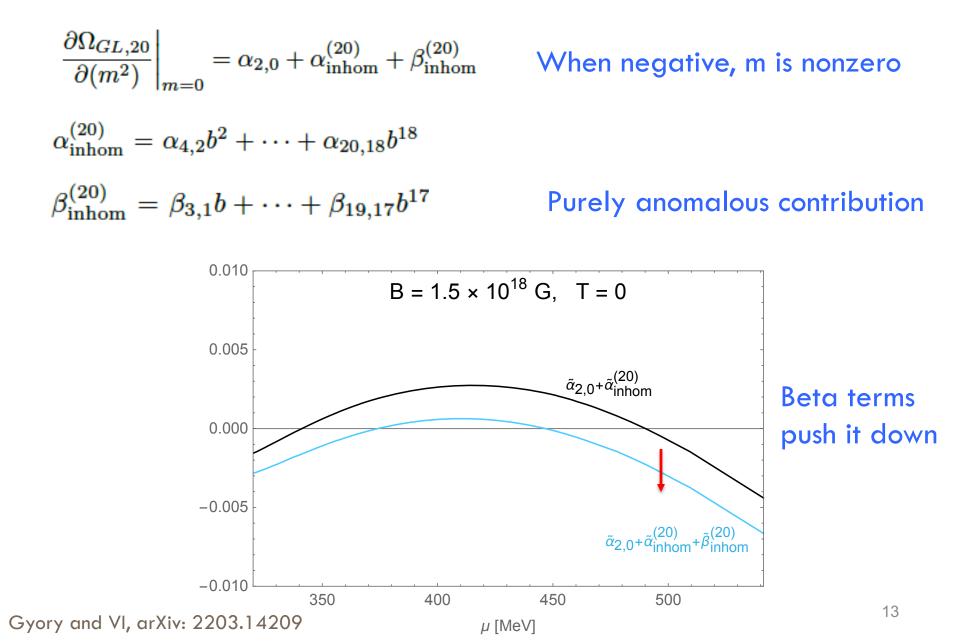


Gyory and VI, arXiv: 2203.14209

disappears at intermediate densities!

12

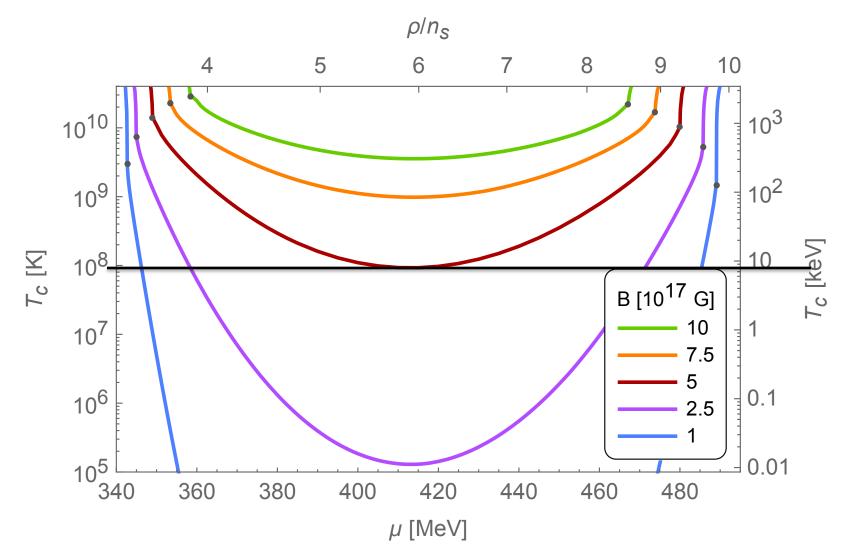
Topology is Important For the Remnant Mass



Relevance for NS ρ/n_s 6 7 8 9 B [10¹⁸ G] 0.1 T_{c} [MeV] μ [MeV]

Gyory and VI, arXiv: 2203.14209

Relevance for NS even in the Remnant Mass Region



However, Single modulated phases like DCDW and the Kink Crystal are unstable against thermal fluctuations. The fluctuations wash out the

long-range order at finite T!

Hidaka, Kamikado, Kanazawa & Noumi, PRD 92, 2015, 034003 Lee et al. PRD 92, 2015, 0304024

Topology Ensures No Landau-Peierls Instability

$$\mathcal{F}[M(x)] = \mathcal{F}_0 + v_z^2 (\partial_z \theta)^2 + v_\perp^2 (\partial_\perp \theta)^2 + \zeta^2 (\partial_z^2 \theta + \partial_\perp^2 \theta)^2 \qquad \theta = qmu$$

$$\langle M \rangle = m e^{iqz} e^{-\langle (qu)^2 \rangle/2}$$

$$\begin{split} \langle q^2 u^2 \rangle &= \frac{1}{(2\pi)^2} \int_0^\infty dk_\perp k_\perp \int_{-\infty}^\infty dk_z \frac{T}{m^2 (v_z^2 k_z^2 + v_\perp^2 k_\perp^2 + \zeta^2 k^4)} \\ &\simeq \frac{T}{4\pi m \sqrt{v_z^2 v_\perp^2}}. \end{split} \qquad \qquad \text{No Landau-Peierls instability.} \\ &\text{Stable at arbitrarily low Ts} \end{split}$$

$$v_{\perp}^{2} = a_{4.2} + m^{2}a_{6.2} + 2q^{2}a_{6.4} + qb_{5,3}$$

At B=0, this term is zero

Topology is essential for the absence of LP instability!

Ferrer and VI, PRD 102, 014010, 2020

Fluctuations Not Relevant at NS Temperatures $\langle M \rangle = m e^{iqz} e^{-\langle (qu)^2 \rangle/2}$ $\langle q^2 u^2 \rangle / 2 \simeq \frac{I}{8\pi m_s \sqrt{v^2 v_\perp^2}}.$ 3 50 $B = 2 \times 10^{18} G$ $- T_{critical}$ $- T_{q^2} u^2 > = 2$ Threshold temperature $T_{\langle q^2 u^2 \rangle} \simeq 4\pi m \sqrt{v_z^2 v_\perp^2 \langle q^2 u^2 \rangle}$ 30 T [MeV] Thanks to the topology 20 $v_{\perp} \neq 0$ and $T_{\langle a^2 u^2 \rangle}$ is tens of MeV, hence the 10 phase is stable against thermal fluctuations at 0 500 300 350 400 450 Ts and densities relevant μ [MeV] for NS

Ferrer, Gyory, and VI, in preparation

MDCDW Satisfies NS Heat Capacity Limit Constraint

$$\frac{C}{\tilde{T}_8} > 3.1 \times 10^{36} \operatorname{erg} \mathrm{K}^{-1} \left(\frac{\tilde{T}_7}{7}\right)^{-2} \left(\frac{E}{7.5 \times 10^{43} \operatorname{erg}}\right)$$

$$C \approx 2.5 \times 10^{36} \text{ erg K}^{-1} \tilde{T}_8$$

Cumming, et. Al, PRD 95, 025806, 2017

For the MDCDW

$$C_V^{\text{MDCDW}} = \sum_{f=u,d} \frac{|e_f B| N_c}{(2\pi)^2} \sum_{l,\xi,\epsilon} \int_{-\infty}^{\infty} dp \left(\frac{|E_{l,\xi,\epsilon}^f - \mu|}{2T}\right)^2 \operatorname{sech}^2\left(\frac{|E_{l,\xi,\epsilon}^f - \mu|}{2T}\right)$$

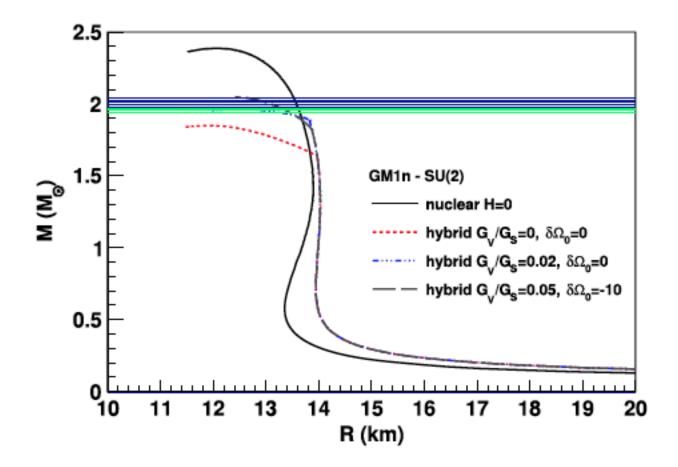
$$C_V^{\text{MDCDW}} \simeq \sum_{f=u,d} \frac{4|e_f B| N_c}{(2\pi)^2} \sum_{l,\xi,\epsilon} \int_{-\infty}^{\infty} dp \left(\frac{|E_{l,\xi,\epsilon}^f - \mu|}{2T}\right)^2 e^{-|E_{l,\xi\epsilon}^f - \mu|/T}$$

$$C_V^{\text{MDCDW}} \simeq \frac{4\pi^2}{3} n_q k_B \left(\frac{T}{T_F}\right) \longrightarrow \tilde{C}_V^{\text{MDCDW}} = C_V^N \times V_{\text{NS}} = 0.4 \times 10^{38} \text{ erg/K}$$

Main contribution comes from the LLL. Here once again topology is fundamental for NS applications!

Ferrer, VI, and Sanson, PRD 103, 123013, 2021

Isospin Asymmetric Magnetic DCDW Compatible with 2 $\rm M_{\odot}$



Outlook:

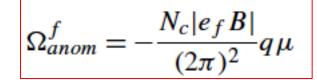
- Explore the feasibility of the MDCDW for NSB mergers
- Check the MDCDW phase against Tidal Deformability constraints. Is topology important there too?
- Compare MDCDW with color superconducting phases. Inhomogeneous ones?
- Compatibility with new multimessenger NS observations?

Auxiliary Slides

Nontrivial Topology of the MDCDW Phase

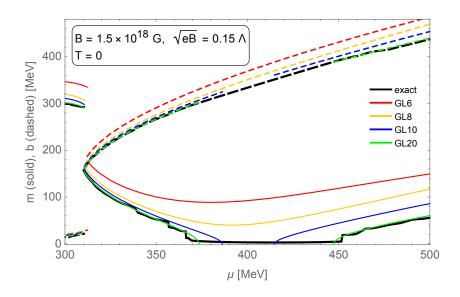
Topology emerges due to the LLL spectral asymmetry

$$\Omega = \Omega_{vac}(B) + \Omega_{anom}(B,\mu) + \Omega_{\mu}(B,\mu) + \Omega_{T}(B,\mu,T) + \frac{m^2}{4G}.$$



$$\rho_B^A = 3 \frac{|e|}{4\pi^2} qB$$

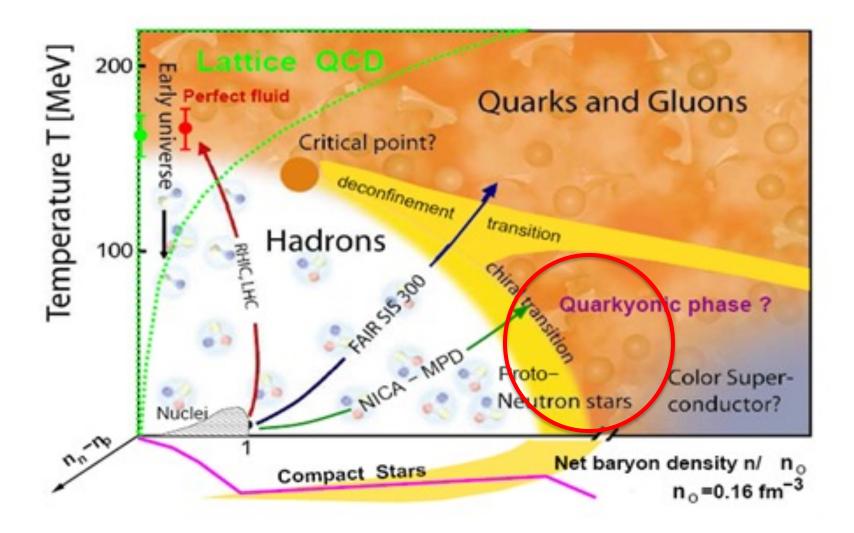
Anomalous baryon number density



The anomaly makes the MDCDW energetically favored over the homogeneous condensate.

Solution exists even at low μ

Region of Interest for Inhomogeneous Phases



25

Low Energy Theory of the DCDW Phase Lee et al. PRD 92 (2015) 034024 Symmetry: $SU(2)_L \times SU(2)_R$, plus spatial rotations and translation

$$\Omega_{GL}(\phi(x)) = \alpha_2(\phi \cdot \phi) + \alpha_{4,1}(\phi \cdot \phi)^2 + \alpha_{4,2}(\nabla \phi \cdot \nabla \phi) + \alpha_{6,1}(\nabla^2 \phi \cdot \nabla^2 \phi) + \alpha_{6,2}(\nabla \phi \cdot \nabla \phi)(\phi \cdot \phi) + \alpha_{6,3}(\phi \cdot \phi)^3 + \alpha_{6,4}(\phi \cdot \nabla \phi)^2 + \dots$$

Consider a general fluctuation of the condensate. The phonon and the axial isospin rotation about the third axis (neutral pion) are locked. There are 3 NG modes.

B=0

L

$$\phi = (\Delta + \delta) \begin{pmatrix} \cos(qz + \beta_3)\cos\beta_2\cos\beta_1\\ \cos(qz + \beta_3)\cos\beta_2\sin\beta_1\\ \cos(qz + \beta_3)\sin\beta_2\\ \sin(qz + \beta_3) \end{pmatrix}$$

Substituting $\phi(x)$ in the free-energy and expanding in powers of the fluctuations and their derivatives, one obtains the lowenergy theory of the fluctuations. $V_{\delta} = M^2 \delta^2 + a_{\delta 4} \Delta^2 (\nabla \delta)^2$

$$\begin{split} &= (\partial_0 \delta)^2 + \Delta^2 (\partial_0 \vec{\beta}_U)^2 + \Delta^2 (\partial_0 \beta_3)^2 \\ &- (\mathcal{V}_{\delta} + \mathcal{V}_{\delta\beta} + \mathcal{V}_{\beta}), \end{split}$$

$$\begin{split} \mathcal{V}_{\delta} &= M^2 \delta^2 + a_{6,4} \Delta^2 (\nabla \delta)^2 \\ &+ 4 a_{6,1} q^2 (\nabla_z \delta)^2 + a_{6,1} (\nabla^2 \delta)^2, \end{split}$$

$$\mathcal{V}_{\delta\beta} = 4q\Delta[a_{6,2}\Delta^2\delta - 2a_{6,1}\nabla^2\delta]\nabla_z\beta_3,$$

$$\begin{split} \mathcal{V}_{\beta} &= a_{6,1} \Delta^2 (\nabla^2 \vec{\beta}_U + q^2 \vec{\beta}_U)^2 \\ &+ a_{6,1} \Delta^2 [(\nabla^2 \beta_3)^2 + 4q^2 (\nabla_z \beta_3)^2], \end{split}$$

(Lack of) Stability of the DCDW Phase

The spectra of the pions have soft modes in the transverse directions

$$\omega_{-}^{2} \simeq a_{6,1} [u_{z-}^{2} k_{z}^{2} + (\vec{k}^{2})^{2}] - A \vec{k}^{2} k_{z}^{2} - B k_{z}^{4},$$

Which in turn leads to infrared divergencies in the second order fluctuations

$$\Delta^2 \langle \beta_3^2(x) \rangle \simeq \frac{1}{2} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{T}{\omega_-^2}$$

The DCDW phase is not stable against the thermal fluctuations of the condensate. There is no true long-range order at nonzero temperature

Lee et al. PRD 92 (2015) 034024 26

Magnetic DCDW Phase

B \neq **O** Symmetry: $(U(1)_L \times U(1)_R)_f$, spatial rotation about z and translation

 $\phi^T = (\sigma, \pi)$ transforms as a 2-D vector under O(2) rotations

Breaking of symmetry: translation and chiral, but they are locked like in the zero-B case.

$$\phi(x) = \phi_0(z + u(x))e^{i\pi} = \Delta e^{iq(z+u(x))}e^{i\pi} = \phi_0(z)e^{i(qu+\pi)}$$

We can then consider only one, say the phonon u(x).

MDCDW

Described by Dirac Hamiltonian

 $H_f = -i\gamma^0 \gamma^i (\partial_i + ie_f A_i + i\frac{e_f}{|e_f|}\gamma_5 \partial_i \theta) + \gamma^0 m$

Axion term in the electromagnetic action

$$S = -\kappa \int d^4x \epsilon^{\mu\alpha\nu\beta} A_\alpha \partial_\nu A_\beta \partial_\mu \theta$$

Topology is associated to asymmetry of the LLL states in the MDCDW.

$$\sigma_{xy}^{anom} = e^2 q / 4\pi^2$$

Anomalous Hall conductivity

Described by Dirac Hamiltonian $H(\mathbf{k}) = \gamma^0 \gamma^i (k_i - b_i \gamma^5) + m \gamma^0 + b_0 \gamma^5.$

Axion term in the electromagnetic action

$$S = -\frac{e^2}{4\pi^2} \int dt \, d^3r \, b_\mu \epsilon^{\mu\nu\alpha\beta} A_\nu \partial_\alpha A_\beta.$$

Topology is associated to band structure with nodes of opposite chirality separated by 2b in momentum space

