Contribution ID: 28 Type: Poster ## Transverse Spherocity and Multiplicity Dependence of R_2 and P_2 Correlation Functions in pp Collisions at $\sqrt{s} = 7$ TeV Using PYTHIA8 Wednesday, 29 June 2022 15:04 (1 minute) Event shape observables such as transverse spherocity(S_0) have evolved as a powerful tool to separate soft and hard contributions in an event in small collision systems. To understand this phenomenon, we used two-particle differential-number correlation functions, R_2 , and transverse momentum correlation functions, P_2 , of charged particles produced in pp collisions at the LHC center-of-mass energy $\sqrt{s}=7$ TeV with the PYTHIA model. The $\Delta\varphi$ -dependance of these correlation functions in different multiplicity and S_0 classes are discussed . We find that these correlation functions exhibit different shapes and sizes in both near-side(NS) and away-side(AS) with multiplicity and S_0 classes. We see a strong correlation in the NS and AS of these correlation functions for low- S_0 (jetty-like), which become weaker for high- S_0 (isotropic). In addition, mean- $p_{\rm T}$ of charged particles for low- S_0 , high- S_0 and S_0 -integrated are discussed. Finally, it was observed that S_0 should be a good observable as compared to multiplicity to disentangle jetty and isotropic events in a small collision system. Primary author: SAHOO, Baidyanath (IIT Bombay, Mumbai, India) Co-authors: Prof. NANDI, Basanta Kumar (IIT Bombay); Prof. DASH, Sadhana (IIT Bombay); Prof. PRUNEAU, Claude Andre (Wayne State University (US)) Session Classification: Posters