

QCD@work 2022 Lecce, June 27-30, 2022

Estimating one-loop radiative corrections in $\tau \to \pi (K) \nu_{\tau} [\gamma]$ and testing new physics

Ignasi Rosell
Universidad CEU Cardenal Herrera
Valencia (Spain)

In collaboration with:

M.A. Arroyo-Ureña (CINVESTAV, IPN, Mexico)

G. Hernández-Tomé (CINVESTAV, IPN, Mexico)

G. López-Castro (CINVESTAV, IPN, Mexico)

P. Roig (CINVESTAV, IPN, Mexico)

JHEP 02 (2022) 173 [arXiv:2112.01859] PRD 104 (2021) 9, L091502 [arXiv:2107.04603]

OUTLINE

1) Motivation

2)
$$P \rightarrow \mu \nu_{\mu} [\gamma] \quad (P=\pi,K)$$

3)
$$\tau \rightarrow P \nu_{\tau} [\gamma] \quad (P=\pi,K)$$

4) Calculation of
$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P \nu_{\tau}[\gamma])}{\Gamma(P \to \mu \nu_{\mu}[\gamma])}$$

- 5) Results
- 6) Applications
- 7) Conclusions

- ✓ Lepton Universality (LU) as a basic tenet of the Standard Model (SM).
 - ✓ A few anomalies observed in semileptonic B meson decays*.
 - ✓ Lower energy observables currently provide the most precise test of LU**.
- ✓ We aim to test muon-tau lepton universality through the ratio (P = π , K)***:

$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])} = \left| \frac{g_{\tau}}{g_{\mu}} \right|_{P}^{2} R_{\tau/P}^{(0)} \left(1 + \delta R_{\tau/P} \right)$$

- ✓ $g_{\tau} = g_{\mu}$ according to LU.
- $\qquad \qquad \mathbf{R}_{\, \mathrm{\tau/P}}^{(0)} \, \text{is the LO result} \quad R_{\tau/P}^{(0)} = \frac{1}{2} \frac{M_\tau^3}{m_\mu^2 m_P} \frac{(1-m_P^2/M_\tau^2)^2}{(1-m_\mu^2/m_P^2)^2} \ .$
- \checkmark $\delta R_{\tau/P}$ encodes the radiative corrections.
- ✓ $\delta R_{\tau/P}$ was calculated by Decker & Finkemeier (DF'95) $\hat{}$:
 - Arr $\delta R_{\tau/\pi} = (0.16 \pm 0.14)\%$ and $\delta R_{\tau/K} = (0.90 \pm 0.22)\%$.
- ✓ Important phenomenological and theoretical reasons to address the analysis again.

*** Marciano & Sirlin'93
^ Decker & Finkemeier'95

^{*} Albrecht et al.'21

^{**} Bryman et al.'21

Phenomenological disagreement in LU tests:

$$\checkmark \quad \text{Using } \frac{\Gamma(\tau \to P \nu_{\tau}[\gamma])}{\Gamma(P \to \mu \nu_{\mu}[\gamma])} \text{and DF'95*, HFLAV** reported:}$$

- $|g_{\tau}/g_{\mu}|_{\pi} = 0.9958 \pm 0.0026$ (at 1.6 σ of LU)
- $|g_{\tau}/g_{\mu}|_{K} = 0.9879 \pm 0.0063$ (at 1.9 σ of LU)
- \checkmark Using $\frac{\Gamma(\tau \to e \bar{\nu}_e \nu_\tau [\gamma])}{\Gamma(\mu \to e \bar{\nu}_e \nu_\mu [\gamma])}$, HFLAV** reported:
 - $|g_{\tau}/g_{\mu}| = 1.0010 \pm 0.0014 \text{ (at } 0.7\sigma \text{ of LU)}$
- \checkmark Using $\dfrac{\Gamma(W o au
 u_{ au})}{\Gamma(W o \mu
 u_{\mu})}$, CMS and ATLAS*** and reported:
 - $|g_{\tau}/g_{\mu}| = 0.995 \pm 0.006$ (at 0.8σ of LU)

^{*} Decker & Finkemeier'95

^{**} HFLAV'21

^{***} CMS'21, ATLAS'21

✓ Phenomenological disagreement in LU tests:

- Theoretical issues within DF'95*:
- $\checkmark \quad \text{Using } \frac{\Gamma(\tau\to P\nu_\tau[\gamma])}{\Gamma(P\to \mu\nu_\mu[\gamma])} \text{and DF'95*, HFLAV** reported:}$
 - $|g_{\tau}/g_{\mu}|_{\pi} = 0.9958 \pm 0.0026$ (at 1.6 σ of LU)
 - $|g_{\tau}/g_{\mu}|_{K} = 0.9879 \pm 0.0063$ (at 1.9 σ of LU)
- $\checkmark \quad \text{Using} \frac{\Gamma(\tau \to e\bar{\nu}_e \nu_\tau [\gamma])}{\Gamma(\mu \to e\bar{\nu}_e \nu_\mu [\gamma])}, \, \text{HFLAV** reported:}$
 - $|g_{\tau}/g_{\mu}| = 1.0010 \pm 0.0014$ (at 0.7σ of LU)
- \checkmark Using $rac{\Gamma(W o au
 u_ au)}{\Gamma(W o \mu
 u_\mu)}$, CMS and ATLAS*** and reported:
 - $|g_{\tau}/g_{\mu}| = 0.995 \pm 0.006$ (at 0.8σ of LU)

- Hadronic form factors are different for real- and virtual-photon corrections, do not satisfy the correct QCD short-distance behavior, violate unitarity, analicity and the chiral limit at leading non-trivial orders.
- ✓ A cutoff to regulate the loop integrals (separating long- and short-distance corrections)
- ✓ Unrealistic uncertainties (purely O(e²p²) ChPT size).

^{*} Decker & Finkemeier'95

^{**} HFLAV'21

^{***} CMS'21, ATLAS'21

Phenomenological disagreement in LU tests:

- ✓ Theoretical issues within DF'95*:
- Vusing $\frac{\Gamma(\tau \to P \nu_{\tau}[\gamma])}{\Gamma(P \to \mu \nu_{\mu}[\gamma])}$ and DF'95*, HFLAV** reported:
 - $|g_{\tau}/g_{\mu}|_{\pi} = 0.9958 \pm 0.0026$ (at 1.6 σ of LU)
 - $\sqrt{|g_{\tau}/g_{\mu}|_{K}} = 0.9879 \pm 0.0063 \text{ (at } 1.9\sigma \text{ of LU)}$
- $\checkmark \quad \text{Using} \frac{\Gamma(\tau \to e \bar{\nu}_e \nu_\tau [\gamma])}{\Gamma(\mu \to e \bar{\nu}_e \nu_\mu [\gamma])}, \, \text{HFLAV** reported:}$
 - $|g_{\tau}/g_{\mu}| = 1.0010 \pm 0.0014$ (at 0.7σ of LU)
- \checkmark Using $\frac{\Gamma(W o au
 u_{ au})}{\Gamma(W o au
 u_{ au})}$, CMS and ATLAS*** and reported:
 - $|g_{\tau}/g_{\parallel}| = 0.995 \pm 0.006$ (at 0.8σ of LU)

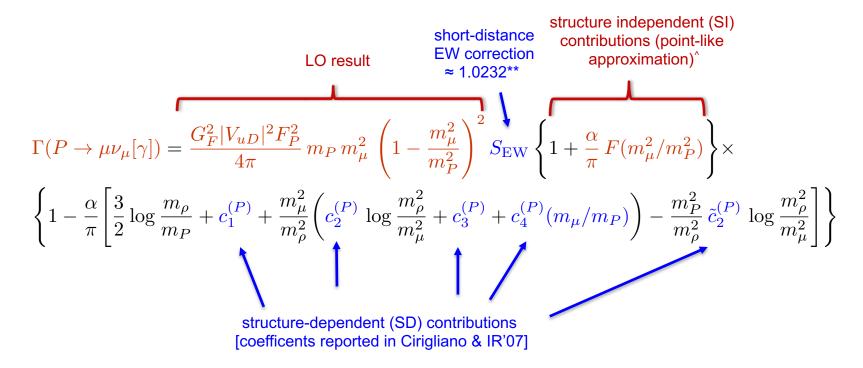
- Hadronic form factors are different for real- and virtualphoton corrections, do not satisfy the correct QCD shortdistance behavior, violate unitarity, analicity and the chiral limit at leading non-trivial orders.
- ✓ A cutoff to regulate the loop integrals (separating long- and short-distance corrections)
- ✓ Unrealistic uncertainties (purely O(e²p²) ChPT size).

- ✓ By-products of the project:
 - ✓ Radiative corrections in $\Gamma(\tau \to P\nu_{\tau}[\gamma])$.
 - ✓ CKM unitarity test via $\Gamma(\tau \to \mathsf{K} \nu_{\tau}[\gamma])$ or via the ratio $\Gamma(\tau \to \mathsf{K} \nu_{\tau}[\gamma]) / \Gamma(\tau \to \pi \nu_{\tau}[\gamma])$.
 - ✓ Constraints on possible non-standard interactions in $\Gamma(\tau \to P\nu_{\tau}[\gamma])^{\hat{}}$.

^{*} Decker & Finkemeier'95

^{**} HFLAV'21

^{***} CMS'21. ATLAS'21


[^] Cirigliano et al.'10 '19

[^] González-Alonso & Martin-Camalich '16

[^] Gonzàlez-Solís et al. '20

2.
$$P \rightarrow \mu \nu_{\mu} [\gamma] \quad (P=\pi,K)$$

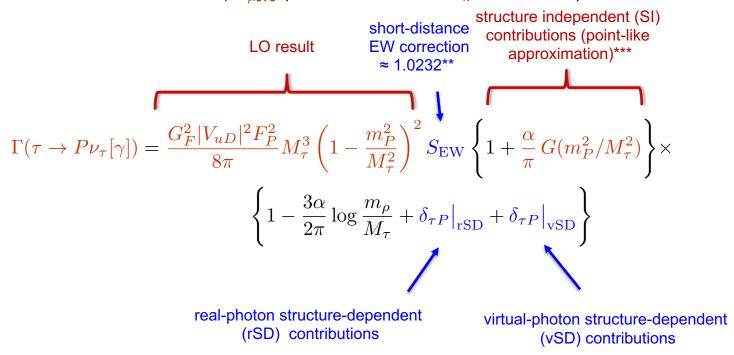
- Calculated unambigously within the Standard Model (Chiral Perturbation Theory, ChPT*).
- Notation by Marciano & Sirlin** and numbers by Cirigliano & IR*** (D=d,s for π ,K and F $_{\pi}\approx$ 92.2 MeV):

- The only model-dependence is the determination of the counterterms in $c_1^{(P)}$ and $c_3^{(P)}$:
 - ✓ Large-N_C expansion of QCD: ChPT is enlarged by including the lightest multiplets of spin-one resonances such that the relevant Green functions are well-behaved at high energies[†].

^ Kinoshita'59 ** Marciano & Sirlin'93

^{*} Weinberg'79

^{*} Gasser & Leutwyler'84 '85


^{***} Cirigliano & IR'07

[†] Ecker et al.'89

[†] Cirigliano et al.'06

3.
$$\tau \rightarrow P \nu_{\tau} [\gamma] \quad (P=\pi,K)$$

- Calculated within an effective approach encoding the hadronization:
 - Large-N_C expansion of QCD: ChPT is enlarged by including the lightest multiplets of spin-one resonances such that the relevant Green functions are well-behaved at high energies*.
- We follow a similar notation to $P \rightarrow \mu \nu_{\mu} [\gamma]$ (D=d,s for π ,K and $F_{\pi} \approx 92.2$ MeV):

- Real-photon structure-dependent (rSD) contributions from Guo & Roig'10[^].
- Virtual-photon structure-dependent (vSD) contributions not calculated in the literature.

*** Kinoshita'59

^ Guo & Roig'10

^{*} Ecker et al.'89

^{*} Cirigliano et al.'06

^{**} Marciano & Sirlin'93

3.
$$\tau \rightarrow P \nu_{\tau} [\gamma] (P=\pi,K)$$

✓ Virtual-photon structure-dependent contribution (vSD):

$$i\mathcal{M}[\tau \to P\nu_{\tau}]|_{SD} = G_{F}V_{uD}e^{2} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} \frac{\ell^{\mu\nu}}{k^{2}[(p_{\tau}+k)^{2}-M_{\tau}^{2}]} \left[i\epsilon_{\mu\nu\lambda\rho}k^{\lambda}p^{\rho}F_{V}^{P}(W^{2},k^{2}) + F_{A}^{P}(W^{2},k^{2})\lambda_{1\mu\nu} + 2B(k^{2})\lambda_{2\mu\nu} \right]$$

$$\ell^{\mu\nu} = \bar{u}(q)\gamma^{\mu}(1-\gamma_{5})[(p_{\tau}+k)+M_{\tau}]\gamma^{\nu}u(p_{\tau})$$

$$\lambda_{1\mu\nu} = \left[(p+k)^{2} + k^{2} - m_{P}^{2} \right]g_{\mu\nu} - 2k_{\mu}p_{\nu}$$

$$\lambda_{2\mu\nu} = k^{2}g_{\mu\nu} - \frac{k^{2}(p+k)_{\mu}p_{\nu}}{(p+k)^{2} - m_{P}^{2}}$$

✓ Form factors from Guo & Roig'10 and Guevara et al.'13*:

$$F_V^P(W^2, k^2) = \frac{-N_C M_V^4}{24\pi^2 F_P(k^2 - M_V^2)(W^2 - M_V^2)}$$

$$F_A^P(W^2, k^2) = \frac{F_P}{2} \frac{M_A^2 - 2M_V^2 - k^2}{(M_V^2 - k^2)(M_A^2 - W^2)}$$

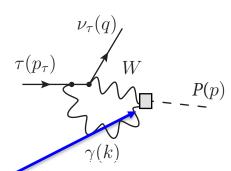
$$B(k^2) = \frac{F_P}{M_V^2 - k^2}$$

- ✓ Well-behaved two- and three-point Green functions.
- ✓ Chiral and U(3) limits.
- ✓ M_V and M_A vector- and axial-vector resonance mass: $M_V=M_ρ$ and $M_A=M_{a1}$ (π case); $M_V=M_{K^*}$ and $M_A\approx M_{f1}$ (K case).

^{*} Guo & Roig'10

^{*} Guevara et al.'13

3.
$$\tau \rightarrow P \nu_{\tau} [\gamma] (P=\pi,K)$$


✓ Virtual-photon structure-dependent contribution (vSD):

$$i\mathcal{M}[\tau \to P\nu_{\tau}]|_{SD} = G_F V_{uD} e^2 \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\ell^{\mu\nu}}{k^2 [(p_{\tau} + k)^2 - M_{\tau}^2]} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right]$$

$$\ell^{\mu\nu} = \bar{u}(q)\gamma^{\mu}(1-\gamma_{5})[(\not p_{\tau}+\not k)+M_{\tau}]\gamma^{\nu}u(p_{\tau})$$

$$\lambda_{1\mu\nu} = [(p+k)^{2}+k^{2}-m_{P}^{2}]g_{\mu\nu}-2k_{\mu}p_{\nu}$$

$$\lambda_{2\mu\nu} = k^{2}g_{\mu\nu}-\frac{k^{2}(p+k)_{\mu}p_{\nu}}{(p+k)^{2}-m_{P}^{2}}$$

✓ Form factors from Guo & Roig'10 and Guevara et al.'13*.

$$F_V^P(W^2, k^2) = \frac{-N_C M_V^4}{24\pi^2 F_P(k^2 - M_V^2)(W^2 - M_V^2)}$$

$$F_A^P(W^2, k^2) = \frac{F_P}{2} \frac{M_A^2 - 2M_V^2 - k^2}{(M_V^2 - k^2)(M_A^2 - W^2)}$$

$$B(k^2) = \frac{F_P}{M_V^2 - k^2}$$

- ✓ Well-behaved two- and three-point Green functions.
- ✓ Chiral and U(3) limits.
- ✓ M_V and M_A vector- and axial-vector resonance mass: M_V=M_ρ and M_A=M_{a1} (π case); M_V=M_{K*} and M_A≈M_{f1} (K case).

^{*} Guo & Roig'10

^{*} Guevara et al.'13

4. Calculation of
$$R_{\tau/P} = R_{\tau/P}^{(0)} (1 + \delta R_{\tau/P}) = R_{\tau/P}^{(0)} (1 + \delta_{\tau P} - \delta_{Pu})$$

- 1. Structure-independent contribution (point-like approximation): SI.
 - ✓ We confirm the results by DF'95*.

$$\left. \frac{\delta R_{\tau/P}}{\delta I} \right|_{\rm SI} = \frac{\alpha}{2\pi} \left\{ \frac{3}{2} \log \frac{M_{\tau}^2 m_P^2}{m_{\mu}^4} + \frac{3}{2} + g \left(\frac{m_P^2}{M_{\tau}^2} \right) - f \left(\frac{m_{\mu}^2}{m_P^2} \right) \right\}$$

$$f(x) = 2\left(\frac{1+x}{1-x}\log x - 2\right)\log(1-x) - \frac{x(8-5x)}{2(1-x)^2}\log x + 4\frac{1+x}{1-x}\operatorname{Li}_2(x) - \frac{x}{1-x}\left(\frac{3}{2} + \frac{4}{3}\pi^2\right)$$

$$g(x) = 2\left(\frac{1+x}{1-x}\log x - 2\right)\log(1-x) - \frac{x(2-5x)}{2(1-x)^2}\log x + 4\frac{1+x}{1-x}\operatorname{Li}_2(x) + \frac{x}{1-x}\left(\frac{3}{2} - \frac{4}{3}\pi^2\right)$$

$$\delta R_{\tau/\pi}|_{SI} = 1.05\%$$
 and $\delta R_{\tau/K}|_{SI} = 1.67\%$

- 2. Real-photon structure-dependent contribution: rSD.
 - ✓ $\delta_{P\mu}|_{rSD}$ from Cirigliano & IR'07**: $\delta_{\pi\mu}|_{rSD}$ = -1.3·10⁻⁸ and $\delta_{K\mu}|_{rSD}$ = -1.7·10⁻⁵.
 - ✓ $\delta_{\tau P}|_{rSD}$ from Guo & Roig'10***: $\delta_{\tau \pi}|_{rSD}$ = 0.15% and $\delta_{\tau K}|_{rSD}$ = (0.18 ± 0.05)%.

$$\delta R_{\tau/\pi}|_{rSD}$$
 = 0.15% and $\delta R_{\tau/K}|_{rSD}$ = (0.18 ± 0.15)%

*** Guo & Roig'10

^{*} Decker & Finkemeier'95

^{**} Cirigliano & IR'07

4. Calculation of
$$R_{\tau/P} = R_{\tau/P}^{(0)} (1 + \delta R_{\tau/P}) = R_{\tau/P}^{(0)} (1 + \delta_{\tau P} - \delta_{P_{\mu}})$$

- 3. Virtual-photon structure-dependent contribution: vSD.
 - ✓ $\delta_{P\mu}|_{vSD}$ from Cirigliano & IR'07*: $\delta_{\pi\mu}|_{vSD}$ = (0.54 ± 0.12)% and $\delta_{K\mu}|_{vSD}$ = (0.43 ± 0.12)%.
 - ✓ $\delta_{\tau P}|_{vSD}$, new calculation: $\delta_{\tau \pi}|_{vSD} = (-0.48 \pm 0.56)\%$ and $\delta_{\tau K}|_{vSD} = (-0.45 \pm 0.57)\%$.

$$\delta R_{\tau/\pi}|_{vSD}$$
 = (-1.02 ± 0.57)% and $\delta R_{\tau/K}|_{vSD}$ = (-0.88 ± 0.58)%

^{*} Cirigliano & IR'07

4. Calculation of
$$R_{\tau/P} = R_{\tau/P}^{(0)} (1 + \delta R_{\tau/P}) = R_{\tau/P}^{(0)} (1 + \delta_{\tau P} - \delta_{Pu})$$

- 3. Virtual-photon structure-dependent contribution: vSD.
 - \checkmark $\delta_{P\mu}|_{VSD}$ from Cirigliano & IR'07*: $\delta_{\pi\mu}|_{VSD} = (0.54 \pm 0.12)\%$ and $\delta_{K\mu}|_{VSD} = (0.43 \pm 0.12)\%$.
 - ✓ $\delta_{\tau P}|_{vSD}$, new calculation: $\delta_{\tau \pi}|_{vSD}$ = (-0.48 ± 0.56)% and $\delta_{\tau K}|_{vSD}$ =(-0.45 ± 0.57)%.

$$\delta R_{\tau/\pi}|_{vSD}$$
 = (-1.02 ± 0.57)% and $\delta R_{\tau/K}|_{vSD}$ = (-0.88 ± 0.58)%

- ✓ Uncertainties dominated by $\delta_{\tau P}|_{vSD}$:
 - P decays within ChPT [counterterms can be determined by matching ChPT with the resonance effective approach at higher energies], whereas τ decays within resonance effective approach [no matching to determine the counterterms].
 - ✓ Estimation of the model-dependence by comparing our results with a less general scenario where only well-behaved two-point Green functions and a reduced resonance Lagrangian is used: ±0.22% and ±0.24% for the pion and the kaon case.
 - Estimation of the counterterms by considering the running between 0.5 and 1.0 GeV: ±0.52% (similar procedure in Marciano & Sirlin'93). Conservative estimate, since vSD counterterms affecting in P decays imply similar corrections to our estimation of the vSD counterterms in τ decays.

5. Results

Contribution	$\delta R_{\tau/\pi}$	$\delta R_{\tau/K}$	Ref.
SI	+1.05%	+1.67%	*
rSD	+0.15%	$+(0.18 \pm 0.05)\%$	**
vSD	$-(1.02 \pm 0.57)\%$	$-(0.88 \pm 0.58)\%$	new
Total	$+(0.18 \pm 0.57)\%$	$+(0.97 \pm 0.58)\%$	new

Errors are not reported if they are lower than 0.01%.

- Central values agree remarkably with DF'95, merely a coincidence: $\delta R_{\tau/\pi} = (0.16 \pm 0.14)\%$ and $\delta R_{\tau/K} = (0.90 \pm 0.22)\%$, **but** in that work:
 - problematic hadronization: form factors are different for real- and virtual-photon corrections, do not satisfy the correct QCD short-distance behavior, violate unitarity, analicity and the chiral limit at leading non-trivial orders.
 - ✓ a cutoff to regulate the loop integrals, splitting unphysically long- and short-distance regimes.
 - ✓ unrealistic uncertainties (purely O(e²p²) ChPT size).

^{*} Decker & Finkemeier'95

^{**} Cirigliano & IR'07

^{**} Guo & Roig'10

6. Application I: Radiative corrections in $\Gamma(\tau \to P\nu_{\tau}[\gamma])$

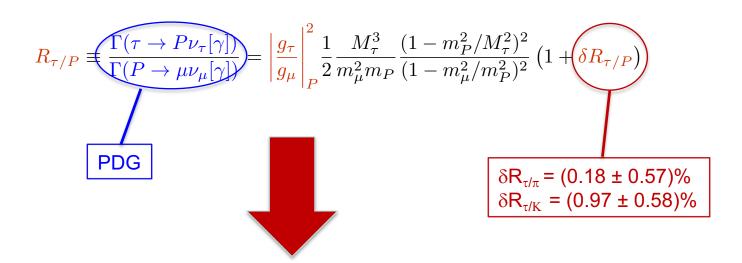
 $\Gamma(\tau \to P \nu_{\tau}[\gamma]) = \frac{G_F^2 |V_{uD}|^2 F_P^2}{8\pi} M_{\tau}^3 \left(1 - \frac{m_P^2}{M_{\tau}^2}\right)^2 S_{\text{EW}} (1 + \delta_{\tau P})$

short-distance EW correction ≈ 1.0232*

 \checkmark $\delta_{\tau P}$ includes SI and SD radiative corrections.

$$\delta_{\tau P} = \frac{\alpha}{2\pi} \left(g \left(\frac{m_P^2}{M_\tau^2} \right) + \frac{19}{4} - \frac{2\pi^2}{3} - 3\log \frac{m_\rho}{M_\tau} \right) + \delta_{\tau P} \big|_{\text{rSD}} + \delta_{\tau P} \big|_{\text{vSD}} = \begin{cases} \delta_{\tau \pi} = (-0.24 \pm 0.56)\% \\ \delta_{\tau K} = (-0.15 \pm 0.57)\% \end{cases}$$

* Marciano & Sirlin'93


6. Application II: lepton universality test

$$R_{ au/P} \equiv rac{\Gamma(au o P
u_{ au}[\gamma])}{\Gamma(P o \mu
u_{\mu}[\gamma])} = \left| rac{g_{ au}}{g_{\mu}}
ight|_{P}^{2} rac{1}{2} rac{M_{ au}^{3}}{m_{\mu}^{2} m_{P}} rac{(1 - m_{P}^{2}/M_{ au}^{2})^{2}}{(1 - m_{\mu}^{2}/m_{P}^{2})^{2}} \left(1 + \delta R_{ au/P}
ight)$$

$$\begin{vmatrix} \frac{g_{\tau}}{g_{\mu}} \Big|_{\pi} = 0.9964 \pm 0.0028_{\text{th}} \pm 0.0025_{\text{exp}} = 0.9964 \pm 0.0038
\begin{vmatrix} \frac{g_{\tau}}{g_{\mu}} \Big|_{K} = 0.9857 \pm 0.0028_{\text{th}} \pm 0.0072_{\text{exp}} = 0.9857 \pm 0.0078
\end{vmatrix}$$

6. Application II: lepton universality test

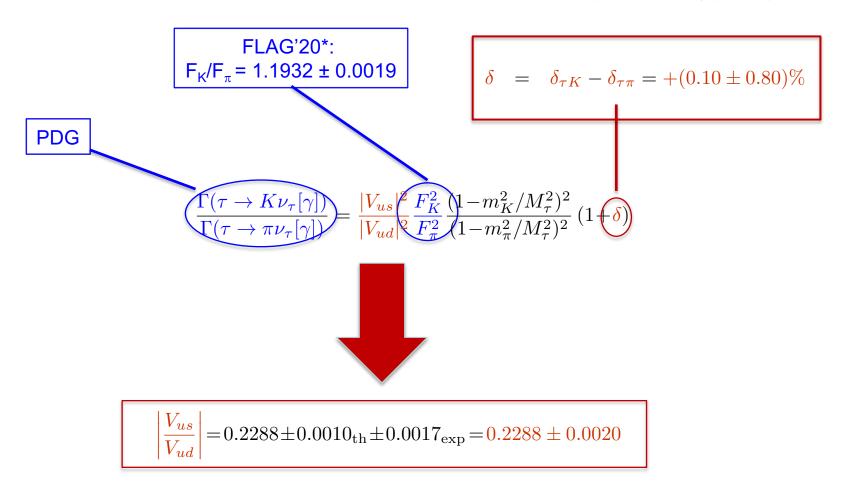
$$\left| \frac{g_{\tau}}{g_{\mu}} \right|_{\pi} = 0.9964 \pm 0.0028_{\text{th}} \pm 0.0025_{\text{exp}} = 0.9964 \pm 0.0038$$

$$\left| \frac{g_{\tau}}{g_{\mu}} \right|_{K} = 0.9857 \pm 0.0028_{\text{th}} \pm 0.0072_{\text{exp}} = 0.9857 \pm 0.0078$$

- \checkmark π case: at 0.9 σ of LU vs. 1.6 σ of LU in HFLAV'21* using DF'95**
- ✓ K case: at 1.8 σ of LU vs. 1.9 σ of LU in HFLAV'21* using DF'95**

^{*} HFLAV'21

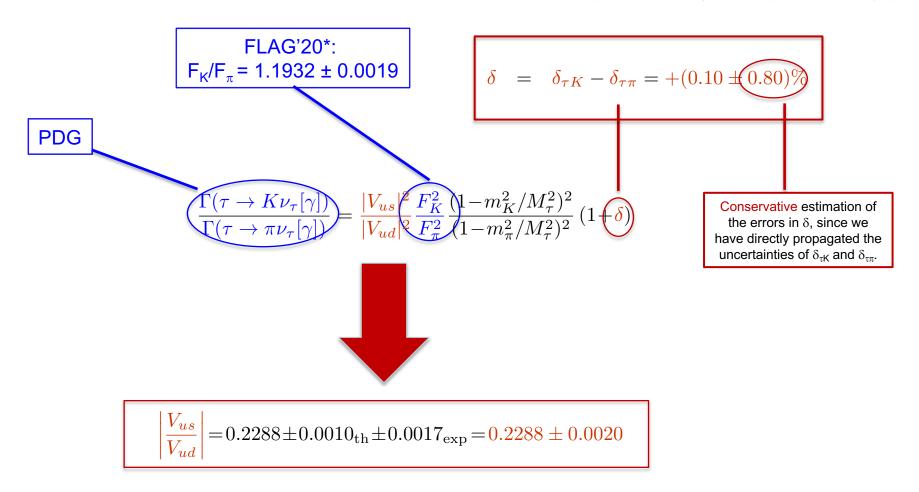
^{**} Decker & Finkemeier'95


6. Application III: CKM unitarity test in the ratio $\Gamma(\tau \to K\nu_{\tau}[\gamma]) / \Gamma(\tau \to \pi\nu_{\tau}[\gamma])$

$$\frac{\Gamma(\tau \to K \nu_{\tau}[\gamma])}{\Gamma(\tau \to \pi \nu_{\tau}[\gamma])} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{F_K^2}{F_{\pi}^2} \frac{(1 - m_K^2 / M_{\tau}^2)^2}{(1 - m_{\pi}^2 / M_{\tau}^2)^2} (1 + \delta)$$

$$\left| \frac{V_{us}}{V_{ud}} \right| = 0.2288 \pm 0.0010_{\text{th}} \pm 0.0017_{\text{exp}} = 0.2288 \pm 0.0020$$

6. Application III: CKM unitarity test in the ratio $\Gamma(\tau \to K\nu_{\tau}[\gamma]) / \Gamma(\tau \to \pi\nu_{\tau}[\gamma])$



- ✓ 2.1σ away from CKM unitarity, considering |V_{ud} |=0.97373±0.00031**.
- ✓ To be compared with $|V_{us}/V_{ud}| = 0.2291 \pm 0.0009^{***}$, obtained with kaon semileptonic decays. Our error does not reach this level due to lack of statistics in τ decays.

^{*} FLAG'20 ** Hardy & Towner'20 *** Seng et al.'21

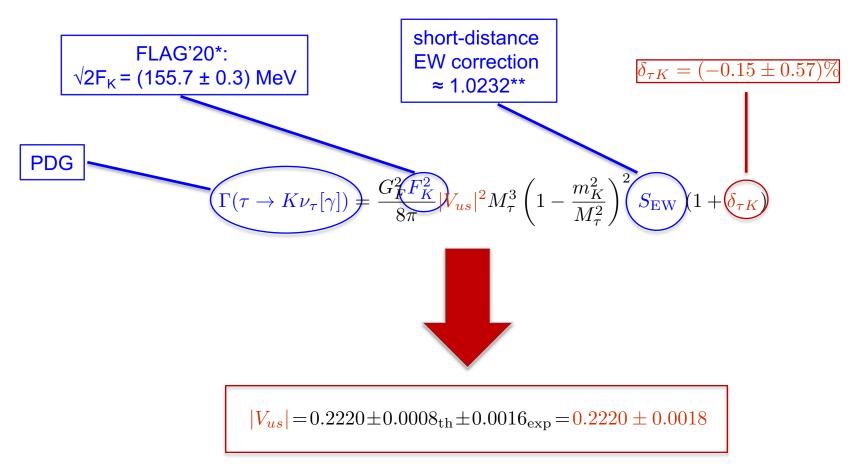
Estimating one-loop radiative corrections in $\tau \to \pi$ (K) ν_{τ} [γ] and testing new physics, I. Rosell

6. Application III: CKM unitarity test in the ratio $\Gamma(\tau \to K\nu_{\tau}[\gamma]) / \Gamma(\tau \to \pi\nu_{\tau}[\gamma])$

- ✓ 2.1σ away from CKM unitarity, considering |V_{ud} |=0.97373±0.00031**.
- ✓ To be compared with $|V_{us}/V_{ud}| = 0.2291 \pm 0.0009^{***}$, obtained with kaon semileptonic decays. Our error does not reach this level due to lack of statistics in τ decays.

^{*} FLAG'20 ** Hardy & Towner'20

^{***} Seng et al.'21


6. Application IV: CKM unitarity test in $\Gamma(\tau \to K\nu_{\tau}[\gamma])$

$$\Gamma(\tau \to K \nu_{\tau}[\gamma]) = \frac{G_F^2 F_K^2}{8\pi} |V_{us}|^2 M_{\tau}^3 \left(1 - \frac{m_K^2}{M_{\tau}^2}\right)^2 S_{\text{EW}} \left(1 + \delta_{\tau K}\right)$$

$$|V_{us}| = 0.2220 \pm 0.0008_{\text{th}} \pm 0.0016_{\text{exp}} = 0.2220 \pm 0.0018$$

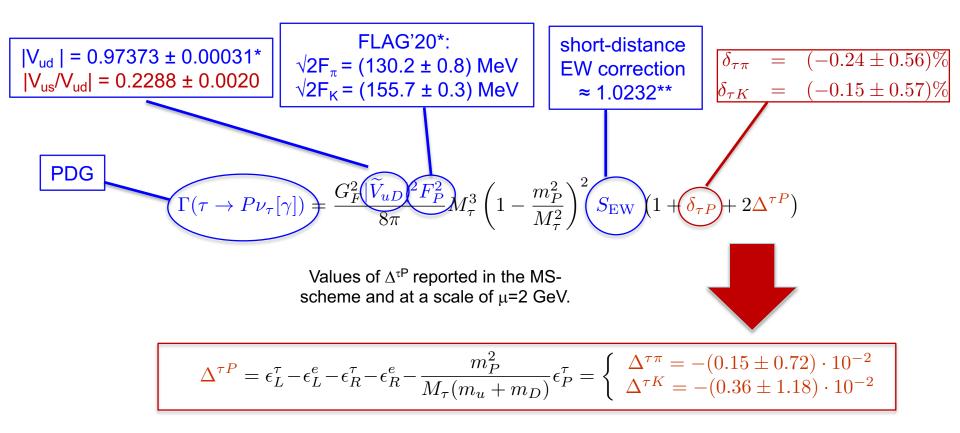
6. Application IV: CKM unitarity test in $\Gamma(\tau \to K\nu_{\tau}[\gamma])$

- ✓ 2.6σ away from CKM unitarity, considering |V_{ud}|=0.97373±0.00031***.
- ✓ To be compared with |V_{us}|=0.2234±0.0015[^] or |V_{us}|=0.2231±0.0006[†], obtained this last one with kaon semileptonic decays. Our error does not reach this level due to lack of statistics in τ decays.

[†] Seng et al.'21

^{*} FLAG'20 ** Marciano & Sirlin'93 *** Hardy & Towner'20 ^ HFLAV'21

6. Application V: constraining non-standard interactions in $\Gamma(\tau \to P\nu_{\tau}[\gamma])$


$$\Gamma(\tau \to P \nu_{\tau}[\gamma]) = \frac{G_F^2 |\widetilde{V}_{uD}|^2 F_P^2}{8\pi} M_{\tau}^3 \left(1 - \frac{m_P^2}{M_{\tau}^2} \right)^2 S_{\text{EW}} \left(1 + \delta_{\tau P} + 2\Delta^{\tau P} \right)$$

Values of $\Delta^{\tau P}$ reported in the MS-scheme and at a scale of μ =2 GeV.

$$\Delta^{\tau P} = \epsilon_L^{\tau} - \epsilon_L^e - \epsilon_R^{\tau} - \epsilon_R^e - \frac{m_P^2}{M_{\tau}(m_u + m_D)} \epsilon_P^{\tau} = \begin{cases} \Delta^{\tau \pi} = -(0.15 \pm 0.72) \cdot 10^{-2} \\ \Delta^{\tau K} = -(0.36 \pm 1.18) \cdot 10^{-2} \end{cases}$$

6. Application V: constraining non-standard interactions in $\Gamma(\tau \to P\nu_{\tau}[\gamma])$

- ✓ To be compared with $\Delta^{\tau\pi} = -(0.15 \pm 0.67) \cdot 10^{-2}$ of Cirigliano et al.'19[^].
- ✓ To be compared with $\Delta^{\tau\pi} = -(0.12 \pm 0.68) \cdot 10^{-2}$ and $\Delta^{\tau K} = (-0.41 \pm 0.93) \cdot 10^{-2}$ of González-Solís et al.'20†.

^{*} Hardy & Towner'20

^{**} FLAG'20

^{***} Marciano & Sirlin'93

[†] Gonzàlez-Solís et al. '20

7. Conclusions

The observable and our result:

$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P \nu_{\tau}[\gamma])}{\Gamma(P \to \mu \nu_{\mu}[\gamma])} = \left| \frac{g_{\tau}}{g_{\mu}} \right|_{P}^{2} R_{\tau/P}^{(0)} \left(1 + \delta R_{\tau/P} \right) \longrightarrow \begin{cases} \delta R_{\tau/\pi} = (0.18 \pm 0.57)\% \\ \delta R_{\tau/K} = (0.97 \pm 0.58)\% \end{cases}$$

- \checkmark Framework: ChPT for π decays and a resonance extension of ChPT for τ decays.
- ✓ Consistent with DF'95*, but with more robust assumptions and yielding a reliable uncertainty.
- Applications:
 - ✓ Theoretical determination of radiative corrections in $\Gamma(\tau \to P\nu_{\tau}[\gamma])$.
 - ✓ $|g_{\pi}/g_{\parallel}|_{P}$ at 0.9 σ (π) and 1.8 σ (K) of LU, reducing HFLAV'21** disagreement with LU.
 - ✓ CKM unitarity in $\Gamma(\tau \to K\nu_{\tau}[\gamma])/\Gamma(\tau \to \pi\nu_{\tau}[\gamma])$: $|V_{us}/V_{ud}| = 0.2288 \pm 0.0020$, at 2.1σ from unitarity.
 - ✓ CKM unitarity in $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma])$: $|V_{us}| = 0.2220 \pm 0.0018$, at 2.6 σ from unitarity.
 - ✓ Constraining non-standard interactions in $\Gamma(\tau \to P\nu_{\tau}[\gamma])$: update of $\Delta^{\tau P}$.
- ✓ Our results have been incorporated in the very recent HFLAV'22.

^{*} Decker & Finkemeier'95

^{**} HFLAV'21

Comparison with Decker & Finkemeier'95 (DF'95) in the π case

Contribution	$\delta R_{\tau\pi}$ by DF'95 [$\mu_{\rm cut}$ =1.5 GeV]	our $\delta R_{\tau\pi}$
SI	+0.84%*	+1.05%
rSD	+0.05%	+0.15%
vSD	$-0.49\%^*$	$-(1.02 \pm 0.57)\%$
short-distance	$-0.25\%^*$	0
Total	$+(0.16 \pm 0.14)\%^*$	$+(0.18 \pm 0.57)\%$

- \checkmark Virtual corrections by DF'95 are $μ_{cut}$ -dependent, since long- and short-distance photonic contributions were separated unphysically: figures with an asterisk are cutoff-dependent.
- The quoted error in the radiative correction of DF'95 arises from uncertainties in hadronic parameters of SD contributions and from variations in the cutoff parameter, μ_{cut}.
- For the SI contribution in DF'95 we have added to the result obtained in the point-like approximation (1.05%) the term coming from cutting off the loops at μ_{cut} (-0.21%).
- ✓ Different contributions of $\delta R_{\tau/K}$ are not provided in DF'95, which prevents a comparison.
- ✓ Although central values for the sum of all the corrections agree remarkably, this is a coincidence, since central values for the SD corrections are largely different within both approaches.