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The B-u plane

» Chiral anomaly induces a coupling oc uBV7? 1

» The ground state at 4 < 1GeV and large B is an inhomogeneous
phase of neutral pions (7°) called the Chiral Soliton Lattice (CSL)?
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> At B > B, the CSL becomes unstable to charged pion fluctuations

!D. T. Son and M. A. Stephanov, Phys. Rev. D 77, 2008 (014021)
2T. Brauner and N. Yamamoto, JHEP, 132, 2017(04)




Superconductivity refresher
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» The charged pion instability is reminiscent of the Vortex
Lattice-Normal transition, but inverted



Lagrangian

We work in Chiral Perturbation Theory with two-flavours, starting from
the Lagrangian
L=Lr+ Lem+ Lwzw,

where ; ) 2
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and the chiral anomaly is incorporated via the Wess-Zumino-Witten3
term
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3J. Wess and B. Zumino, Phys. Lett. B 37, 1971 & E. Witten, Nucl. Phys. B 223,
1983



Free energy

From the Lagrangian we obtain the free energy
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where ¢ (complex scalar field) and « (real scalar field) parameterise the
pion fields, and the magnetic field B =V x A.



Equations of motion

From the Lagrangian/Free Energy we obtain the equations of motion for
p, A and «
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respectively, where
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Applying Abrikosov's expansion near B,

» To find solutions analytically near By, we follow Abrikosov’s original
paper® and expand in the small parameter € ~ /B — Be, like so

p=po+dp+..., A=Ap+6A+..., a=aoy+da+...,
where
Ap, o ~ €2, ©o ~ €, SA, o ~ €2, Sp ~ el

> We expand the free energy and equations of motion (with
By =V x Ap and 6B =V x A)

» For simplicity, we solve the equations of motion in the chiral limit
(i.e. my =0)

*A.A. Abrikosov, JETP, 5, p.1174, 1957(06)



Solutions of the expanded equations of motion

» The solutions at €0 are

e g
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» The equation for g is the same as the Schrodinger equation for a
particle in a magnetic field with the usual Landau level result®

» Choosing the ground state solution,

(x,y) = Z Che™ e R x ) 7

n=—0o0

where relations between different C, determine the configuration of
the lattice

See M. Tinkham, Introduction to Superconductivity. Dover Publications, New
York, 2004



Solutions of expanded equations of motion

» The correction to the magnetic field becomes
3B(x,y) = [(B) = Bez + e ({lpo(x, ¥)I*) — lo(x,¥)[*)] &,
where we've introduced a spatial average defined as

(Fxy.2) =, [ Flxy2)av.

for a function f(x, y, z) over the volume V

» The other equation at order €? is solved by

sa(z) = 4:2’23 ((B) — Bea) z



Free energy result

We do not solve the dp equation but use it instead to show that
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where (=

and 2x% = By /ef?.

With F expanded to fourth order, we obtain

_ 1 ((B)=Bw)”
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which is the difference in free energy between our constructed phase and
the “CSL"” phase.

We have analytically constructed a phase which is preferred above B!




[ and lattice configurations
» To minimise F we must minimise 5 which can vary depending on
the periodicity condition C, = C,4pn, where N is an integer

» To explore a continuum of geometries®, we set N = 2 and
Co = +iGy

Brn=2(R),Co=%iCq

ol

Figure: R = /7. Left: Red dots correspond to contour plots on the right.
Right: |@o|? in the x-y plane. Dark regions correspond to vortices.

SW.H. Kleiner, L.M. Roth and S.H. Autler, Phys. Rev. 133 5A A1226, 1964



Charged pion condensate and baryon number density

Li=800MeV, e(B)=0.176GeV?2
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Figure: Charged pion vortex lattice (left) and local baryon number density
(right).

‘ A superconducting crystal with “baryon tubes”!




Summary

» The preferred phase above B, is a charged pion vortex lattice
coexisting with a neutral pion superflow

» Further analysis of 3 parameter reveals the most preferred
configuration of vortices is hexagonal

» The baryon number density is not only non-zero but also
inhomogeneous, exhibiting the periodic hexagonal configuration
of the charged pion vortex lattice

» Our phase is a 2D superconducting baryon crystal



Outlook

» In the more physical scenario where m, # 0, a 3D crystalline
structure is expected

» Our calculation is confined near B., - what does the lattice look like
away from the transition?

> At p ~ 1GeV actual baryons are expected to emerge, thus their
inclusion would lead to a more realistic calculation

» The CSL” and charged pion superconductivity? also emerge in the
B-11; plane - can we extend our results to this plane??

"T. Brauner, G. Filios, and H. Kolegova, JHEP 12, p. 29, 2019
8pP. Adhikari, T. D. Cohen, and J. Sakowitz, Phys. Rev. C 91, 2015 (4)
°M. S. Grgnli and T. Brauner, Eur. Phys. J. C 82, 2022(4)



