QCDF Amplitudes from SU(3) Symmetries

Gilberto Tetlalmatzi-Xolocotzi

Based on: T. Huber and GTX, 2111.06418 Eur.Phys.J.C 81 (2021) 7, 658

> CPPS, Theoretische Physik 1, Universität Siegen

Non-leptonic B meson decays

 $m_b \simeq 4 \ GeV$ $M_{B^0} \simeq M_{B_s} \simeq M_{B^+} \simeq 5 \ GeV$

5 times the mass of a Hydrogen atom

Non-leptonic B meson decays

We are interested in B meson decays into pairs of light pseudoscalar mesons

 $B \rightarrow PP$

 $B = (B^+ \ B_1^0 \ B^0)$

The light pseudoscalar mesons are bound states of light quarks [u, d, s] (SU(3) symmetry)

Non-leptonic B meson decays

We are interested in **B** meson decays into pairs of light pseudoscalar mesons

 $b \rightarrow u \overline{u} q$

q = d, s

Several possible decay channels

$B^- o \pi^0 \pi^-$	$\overline{B}^0 \to K^0 \overline{K}^0$
$B^- \to \pi^- \eta_8$	$\overline{B}^0 o \eta_8 \eta_8$
$B^- \to \pi^- \eta_1$	$\overline{B}^0 \to \eta_8 \eta_1$
$B^- \to K^0 K^-$	$\overline{B}^0 o \eta_1 \eta_1$
$\overline{B}^0 \to \pi^+ \pi^-$	$\overline{B}^0_s \to \pi^0 K^0$
$\overline{B}^0 \to \pi^0 \pi^0$	$\overline{B}^0_s \to \pi^- K^+$
$\overline{B}^0 \to \pi^0 \eta_8$	$\overline{B}^0_s \to K^0 \eta_8$
$\overline{B}^0 o \pi^0 \eta_1$	$\overline{B}_s^0 \to K^0 \eta_1$
$\overline{B}^0 \to K^+ K^-$	

	Pro concerna de la concerna de
$B^- \to \pi^0 K^-$	$\overline{B}^0_s \to \pi^+\pi^-$
$B^- \to \pi^- \overline{K}^0$	$\overline{B}^0_s \to \pi^0 \pi^0$
$B^- \to K^- \eta_8$	$\overline{B}_s^0 \to \pi^0 \eta_1$
$B^- \to K^- \eta_1 - \frac{1}{2}$	$\overline{B}^0_s \to K^+ K^-$
$\overline{B}^0 \to \pi^+ K^-$	$\overline{B}^0_s \to K^0 \overline{K}^0$
$\overline{B}^0 \to \pi^0 \overline{K}^0$	$\overline{B}^0_s o \eta_8 \eta_8$
$\overline{B}^0 \to \overline{K}^0 \eta_8$	$\overline{B}_s^0 \to \eta_8 \eta_1$
$\overline{B}^0 \to \overline{K}^0 \eta_1 -$	$\overline{B}_s^0 o \eta_1 \eta_1$

Consider the process $B \rightarrow PP$

where P is a charmless pseudoscalar meson

The physical amplitude can be decomposed as

$$\begin{aligned} \mathcal{A}^{TDA} &= i \frac{G_F}{\sqrt{2}} \Big[\mathcal{T}^{TDA} + \mathcal{P}^{TDA} \Big] \\ \lambda_p^{(q)} &= V_{pb} V_{pq}^* \qquad \lambda_u^{(q)} \qquad \lambda_t^{(q)} \qquad q = d, s \\ \lambda_u^{(q)} + \lambda_c^{(q)} + \lambda_t^{(q)} = 0 \end{aligned}$$

 $\begin{aligned} \mathcal{T}^{TDA} &= \underline{T} \ B_i(M)^i_j \bar{H}^{jl}_k(M)^k_l + \underline{C} \ B_i(M)^i_j \bar{H}^{lj}_k(M)^k_l + \underline{A} \ B_i \bar{H}^{il}_j(M)^j_k(M)^k_l \\ &+ \underline{E} \ B_i \bar{H}^{li}_j(M)^j_k(M)^k_l + \underline{T}_{ES} B_i \bar{H}^{ij}_l(M)^l_j(M)^k_k + \underline{T}_{AS} B_i \bar{H}^{ji}_l(M)^l_j(M)^k_k \\ &+ T_S B_i(M)^i_j \bar{H}^{lj}_l(M)^k_k + T_{PA} B_i \bar{H}^{li}_l(M)^j_k(M)^k_j + \underline{T}_P B_i(M)^i_j(M)^j_k \bar{H}^{lk}_l \\ &+ \underline{T}_{SS} B_i \bar{H}^{li}_l(M)^j_j(M)^k_k, \end{aligned}$

SU(3) Flavour [u, d, s]

$$B = (B^+, B_d^0, B_s^0) \qquad M = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta'_q}{\sqrt{2}} & \pi^- & K^- \\ \pi^+ & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta'_q}{\sqrt{2}} & \bar{K}^0 \\ K^+ & K^0 & \eta_s + \eta'_s \end{pmatrix}$$

 $\bar{H}_1^{12} = \lambda_u^{(d)}, \quad \bar{H}_1^{13} = \lambda_u^{(s)},$

 $\mathcal{T}^{TDA} = \underline{T} \ B_i(M)^i_j \bar{H}^{jl}_k(M)^k_l + \underline{C} \ B_i(M)^i_j \bar{H}^{lj}_k(M)^k_l + \underline{A} \ B_i \bar{H}^{il}_j(M)^j_k(M)^k_l$ $+ \underline{E} \ B_i \bar{H}^{li}_j(M)^j_k(M)^k_l + \underline{T}_{ES} B_i \bar{H}^{ij}_l(M)^l_j(M)^k_k + \underline{T}_{AS} B_i \bar{H}^{ji}_l(M)^l_j(M)^k_k$ $+ \underline{T}_S B_i(M)^i_j \bar{H}^{lj}_l(M)^k_k + \underline{T}_{PA} B_i \bar{H}^{li}_l(M)^j_k(M)^k_j + \underline{T}_P B_i(M)^i_j(M)^j_k \bar{H}^{lk}_l$ $+ \underline{T}_{SS} B_i \bar{H}^{li}_l(M)^j_j(M)^k_k,$

- T :Color allowed tree.
- C : Color-suppressed tree.
- E : W-exchange diagram.

- P: QCD-penguin.
- S: QCD-singlet penguin.
- A: Annihilation.

 $\begin{aligned} \mathcal{T}^{TDA} &= \underline{T} \ B_i(M)^i_j \bar{H}^{jl}_k(M)^k_l + \underline{C} \ B_i(M)^i_j \bar{H}^{lj}_k(M)^k_l + \underline{A} \ B_i \bar{H}^{il}_j(M)^j_k(M)^k_l \\ &+ \underline{E} \ B_i \bar{H}^{li}_j(M)^j_k(M)^k_l + \underline{T}_{ES} B_i \bar{H}^{ij}_l(M)^l_j(M)^k_k + \underline{T}_{AS} B_i \bar{H}^{ji}_l(M)^l_j(M)^k_k \\ &+ \underline{T}_S B_i(M)^i_j \bar{H}^{lj}_l(M)^k_k + \underline{T}_{PA} B_i \bar{H}^{li}_l(M)^j_k(M)^k_j + \underline{T}_P B_i(M)^j_j(M)^j_k \bar{H}^{lk}_l \\ &+ \underline{T}_{SS} B_i \bar{H}^{li}_l(M)^j_j(M)^k_k, \end{aligned}$

SU(3)-Irreducible decomposition

 $\begin{aligned} \mathcal{T}^{IRA} &= A_3^T B_i (\bar{H}_{\bar{3}})^i (M)_k^j (M)_j^k + C_3^T B_i (M)_j^i (M)_k^j (\bar{H}_{\bar{3}})^k + B_3^T B_i (\bar{H}_3)^i (M)_k^k (M)_j^j \\ &+ D_3^T B_i (M)_j^i (\bar{H}_{\bar{3}})^j (M)_k^k + A_6^T B_i (H_6)_k^{ij} (M)_j^l (M)_l^k + C_6^T B_i (M)_j^i (\bar{H}_6)_k^{jl} (M)_l^k \\ &+ B_6^T B_i (\bar{H}_6)_k^{ij} (M)_j^k (M)_l^l + A_{15}^T B_i (\bar{H}_{\bar{15}})_k^{ij} (M)_j^l (M)_l^k + C_{15}^T B_i (M)_j^i (\bar{H}_{\bar{15}})_l^{jk} (M)_k^l \\ &+ B_{15}^T B_i (\bar{H}_{\bar{15}})_k^{ij} (M)_j^k (M)_l^l. \end{aligned}$

SU(3) irreducible decomposition

$$\bar{H}_{k}^{ij} = \frac{1}{8} (H_{\overline{15}})_{k}^{ij} + \frac{1}{4} (H_{6})_{k}^{ij} - \frac{1}{8} (H_{\overline{3}})^{i} \delta_{k}^{j} + \frac{3}{8} (H_{\overline{3}'})^{j} \delta_{k}^{i}$$

SU(3)-Irreducible decomposition

 $\begin{aligned} \mathcal{T}^{IRA} &= A_3^T B_i (\bar{H}_{\bar{3}})^i (M)_k^j (M)_j^k + C_3^T B_i (M)_j^i (M)_k^j (\bar{H}_{\bar{3}})^k + B_3^T B_i (\bar{H}_3)^i (M)_k^k (M)_j^j \\ &+ D_3^T B_i (M)_j^i (\bar{H}_{\bar{3}})^j (M)_k^k + A_6^T B_i (H_6)_k^{ij} (M)_j^l (M)_l^k + C_6^T B_i (M)_j^i (\bar{H}_6)_k^{jl} (M)_l^k \\ &+ B_6^T B_i (\bar{H}_6)_k^{ij} (M)_j^k (M)_l^l + A_{15}^T B_i (\bar{H}_{\bar{15}})_k^{ij} (M)_j^l (M)_l^k + C_{15}^T B_i (M)_j^i (\bar{H}_{\bar{15}})_l^{jk} (M)_k^l \\ &+ B_{15}^T B_i (\bar{H}_{\bar{15}})_k^{ij} (M)_j^k (M)_l^l. \end{aligned}$

Topological to SU(3)

X.-G. He and W. Wang: 1803.04227

$$\begin{split} A_3^T &= -\frac{A}{8} + \frac{3E}{8} + T_{PA}, & B_3^T = T_{SS} + \frac{3T_{AS} - T_{ES}}{8}, \\ C_3^T &= \frac{1}{8}(3A - C - E + 3T) + T_P, & D_3^T = T_S + \frac{1}{8}(3C - T_{AS} + 3T_{ES} - T) \\ A_6^T &= \frac{1}{4}(A - E), & B_6^T = \frac{1}{4}(T_{ES} - T_{AS}), \\ C_6^T &= \frac{1}{4}(-C + T), & A_{15}^T = \frac{A + E}{8}, \\ B_{15}^T &= \frac{T_{ES} + T_{AS}}{8}, & C_{15}^T = \frac{C + T}{8}, \end{split}$$

SU(3) amplitudes from data

The physical amplitudes can be expressed as linear combinations of the SU(3) sub-amplitudes

Channel	A_3^T	C_3^T	A_6^T	C_6^T	A_{15}^{T}	C_{15}^{T}	B_3^T	B_6^T	B_{15}^{T}	D_3^T
$B^- \to \pi^0 \pi^-$	0	0	0	0	0	$4\sqrt{2}$	0	0	0	0
$B^- \to K^0 K^-$	0	1	1	-1	3	-1	0	0	0	0
$B^0 \to \pi^+\pi^-$	2	1	-1	1	1	3	0	0	0	0
$B^0 \to \pi^0 \pi^0$	2	1	-1	1	1	-5	0	0	0	0
$B^0 \to K^+ K^-$	2	0	0	0	2	0	0	0	0	0
$B^0 \to K^0 \bar{K}^0$	2	1	1	-1	-3	-1	0	0	0	0
$B_s \to \pi^0 K^0$	0	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{5}{\sqrt{2}}$	0	0	0	0
$B_s \to \pi^- K^+$	0	1	-1	1	-1	3	0	0	0	0
$B^- \to \pi^0 K^-$	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{3}{\sqrt{2}}$	$\frac{7}{\sqrt{2}}$	0	0	0	0
$B^- \to \pi^- K^0$	0	1	1	-1	3	-1	0	0	0	0
$B^0 \to \pi^+ K^-$	0	1	-1	1	-1	3	0	0	0	0
$B^0 \to \pi^0 K^0$	0	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{5}{\sqrt{2}}$	0	0	0	0
$B_s \to \pi^+ \pi^-$	2	0	0	0	2	0	0	0	0	0
$B_s \to \pi^0 \pi^0$	2	0	0	0	2	0	0	0	0	0
$B_s \to K^+ K^-$	2	1	-1	1	1	3	0	0	0	0
$B_s \to K^0 \bar{K}^0$	2	1	1	-1	-3	-1	0	0	0	0

SU(3) amplitudes from data

Extract the SU(3) amplitudes by fitting to data

$$\Gamma(\bar{B} \to M_1 M_2) = \frac{S}{16\pi M_B} |\mathcal{A}_{B \to M_1 M_2}|^2$$

S=1 if $M_1 \neq M_2$ S=1/2 if $M_1 = M_2$

Observables:

Branching fractions $\mathcal{B}(\bar{B} \to \bar{f}) = \frac{1}{2}\tau_B \Big[\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f) \Big]$

CP Asymmetries $\mathcal{A}_{CP}(\bar{B} \to \bar{f}) = \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$

SU(3) amplitudes from data Perform a χ^2 fit $\chi^2 = \sum_{i=1}^{\infty} \left(\frac{\mathcal{O}_i^{\text{Theo}} - \mathcal{O}_i^{\text{Exp}}}{\sigma_i^{\text{Exp}}}\right)^2$ <u>10 Tree complex amplitudes</u> A_3^T , C_3^T , A_6^T , C_6^T , A_{15}^T , C_{15}^T , B_3^T , B_6^T , B_{15}^T , D_3^T and 10 Penguin complex amplitudes (replace T for P above) The combinations $C_6^T - A_6^T$ and $B_6^T + \underline{A_6^T}$ always appear together (analogously for penguins) $C_6^T - A_6^T \to C_6^T \qquad C_6^P - A_6^P \to C_6^P$ Redefine $B_6^T + A_6^T \to B_6^T \qquad B_6^P + A_6^P \to B_6^P$ Absorb a global phase by taking C_3^P as a real parameter 35 parameters + θ_{FKS} = 36 parameters to fit.

SU(3) amplitudes from data

Fit for the modulus and and phases of the relevant parameters.

Use random sampling to obtain the best fit point with 10⁹ points:

- Calculate the χ^2 function for 10⁶ points assuming a flat probability distribution.
- Select the best 5 points leading to the minimum χ^2 .
- Use these partial minimums as starting points for the Sequential Least Square Programming algorithm, SLSQP.
- Repeat 10³ times to get the overall minimum.

To obtain the 65 % C.L regions apply a likelihood ratio test using Wilk's theorem.

SU(3) amplitudes from data

Best fit point (modulus in GeV³)

$ A_3^T = 0.029,$	$\delta_{A_3^T} = -3.083,$	$ C_3^T = 0.258,$	$\delta_{C_3^T} = -0.105,$
$ C_6^T = 0.235,$	$\delta_{C_6^T} = -0.079,$	$ A_{15}^T = 0.029,$	$\delta_{A_{15}^T} = -3.083,$
$ C_{15}^T = 0.151,$	$\delta_{C_{15}^T} = 0.061,$	$ B_3^T = 0.034,$	$\delta_{B_3^T}=3.087$
$ B_6^T = 0.033,$	$\delta_{B_6^T} = -0.286,$	$ B_{15}^T = 0.008,$	$\delta_{B_{15}^T} = -1.892$
$ D_3^T = 0.055,$	$\delta_{D_3^T} = 2.942,$		
$ A_3^P = 0.014,$	$\delta_{A_3^P} = -1.328,$	$ C_6^P = 0.145,$	$\delta_{C_6^P} = -2.881,$
$ A_3^P = 0.014,$ $ A_{15}^P = 0.003,$	$\delta_{A_3^P} = -1.328,$ $\delta_{A_{15}^P} = 2.234,$	$ C_6^P = 0.145,$ $ C_{15}^P = 0.003,$	$\begin{split} \delta_{C_6^P} &= -2.881, \\ \delta_{C_{15}^P} &= -0.608, \end{split}$
$ A_3^P = 0.014,$ $ A_{15}^P = 0.003,$ $ B_3^P = 0.043,$	$\begin{split} &\delta_{A_3^P} = -1.328, \\ &\delta_{A_{15}^P} = 2.234, \\ &\delta_{B_3^P} = 2.367, \end{split}$	$ C_6^P = 0.145,$ $ C_{15}^P = 0.003,$ $ B_6^P = 0.099,$	$\begin{split} &\delta_{C_6^P} = -2.881, \\ &\delta_{C_{15}^P} = -0.608, \\ &\delta_{B_6^P} = 0.353, \end{split}$
$\begin{split} A_3^P &= 0.014, \\ A_{15}^P &= 0.003, \\ B_3^P &= 0.043, \\ B_{15}^P &= 0.031, \end{split}$	$\begin{split} &\delta_{A_3^P} = -1.328, \\ &\delta_{A_{15}^P} = 2.234, \\ &\delta_{B_3^P} = 2.367, \\ &\delta_{B_{15}^P} = -0.690, \end{split}$	$ C_6^P = 0.145,$ $ C_{15}^P = 0.003,$ $ B_6^P = 0.099,$ $ D_3^P = 0.030,$	$\begin{split} &\delta_{C_6^P} = -2.881, \\ &\delta_{C_{15}^P} = -0.608, \\ &\delta_{B_6^P} = 0.353, \\ &\delta_{D_3^P} = 0.477, \end{split}$

Annihilation amplitudes below 10%.

 $\chi^2/d.o.f. = 0.851$

Fit-Results: Branching fractions

	Branch	ing ratio		Branch	ing ratio		
Channel	in unit	s of 10^{-6}	Channel	in units of 10^{-6}			
Channel	Experimental	Theoretical	Chaimer	Experimental	Theoretical		
$B^- \to \pi^0 \pi^-$	5.5 ± 0.4	$6.04\substack{+2.42\\-2.51}$	$B^- \to \eta \pi^-$	4.02 ± 0.27	$3.80^{+1.25}_{-1.55}$		
$B^- \to K^0 K^-$	1.31 ± 0.17	$1.36_{-0.16}^{+0.17}$	$B^- o \eta' \pi^-$	2.7 ± 0.9	$3.55_{-1.67}^{+4.49}$		
$\bar{B}^0 \to \pi^+\pi^-$	5.12 ± 0.19	$6.31\substack{+0.61\\-0.50}$	$\bar{B}^0 o \eta \pi^0$	0.41 ± 0.17	$0.41_{-4.08}^{+8.90}$		
$\bar{B}^0 \to \pi^0 \pi^0$	1.59 ± 0.26	$1.01\substack{+1.30\\-0.51}$	$\bar{B}^0 o \eta' \pi^0$	1.2 ± 0.6	$1.20^{+3.62}_{-1.19}$		
$\bar{B}^0 \to K^+ K^-$	0.078 ± 0.015	$0.13\substack{+0.08 \\ -0.07}$	$\bar{B}_s ightarrow \eta K^0$	Not available	$0.13\substack{+0.11\\-0.08}$		
$\bar{B}^0 \to K^0 \bar{K}^0$	1.21 ± 0.16	$1.13_{-0.91}^{+0.83}$	$\bar{B}_s \to \eta' K^0$	Not available	$6.65^{+1.48}_{-1.65}$		
$\bar{B}_s \to \pi^- K^+$	5.8 ± 0.7	$7.75\substack{+0.63 \\ -0.09}$	$B^- \to \eta K^-$	2.4 ± 0.4	$2.34^{+1.39}_{-1.67}$		
$B^- o \pi^0 K^-$	12.9 ± 0.5	$12.78^{+1.75}_{-1.94}$	$B^- o \eta' K^-$	70.4 ± 2.5	$70.82^{+11.16}_{-11.53}$		
$B^- o \pi^- \bar{K}^0$	23.7 ± 0.8	$23.85^{+2.23}_{-2.31}$	$\bar{B}^0 \to \eta K^0$	1.23 ± 0.27	$1.38^{+1.15}_{-0.36}$		
$\bar{B}^0 \to \pi^+ K^-$	19.6 ± 0.5	$19.47^{+1.72}_{-2.24}$	$\bar{B}^0 \to \eta' K^0$	6.6 ± 0.4	$6.65^{+1.48}_{-1.65}$		
$\bar{B}^0 \to \pi^0 \bar{K}^0$	9.9 ± 0.5	$10.17\substack{+2.00 \\ -2.30}$	$\bar{B}_s \to \eta \pi^0$	$< 10^{3}$	$31.15_{-31.14}^{+39.05}$		
$\bar{B}_s \to \pi^+ \pi^-$	0.7 ± 0.1	$0.57\substack{+0.40 \\ -0.42}$	$\bar{B}_s o \eta' \pi^0$	Not available	$11.13^{+74.75}_{-11.12}$		
$\bar{B}_s ightarrow \pi^0 \pi^0$	< 210	$0.28^{+0.20}_{-0.21}$	$\bar{B}^0 \to \eta \eta$	< 1	$0.30\substack{+0.70\\-0.30}$		
$\bar{B}_s \to K^+ K^-$	26.6 ± 2.2	$20.63_{-8.09}^{+6.80}$	$\bar{B}_s \to \eta \eta$	$< 1.5 \times 10^3$	$2.58^{+36.53}_{-2.57}$		
$\bar{B}_s \to K^0 \bar{K}^0$	20 ± 6	$24.64^{+18.84}_{-21.14}$	$ar{B}^0 o \eta' \eta'$	< 1.7	$1.14\substack{+0.57\\-1.07}$		
$\bar{B}_s \to \pi^0 K^0$	Not available	$0.71\substack{+1.47 \\ -0.27}$	$\bar{B}_s \to \eta' \eta'$	33 ± 7	$33.00^{+24.52}_{-31.74}$		
			$\bar{B}^0 o \eta' \eta$	< 1.2	$0.61\substack{+0.59\\-0.60}$		
			$\bar{B}_s \to \eta' \eta$	Not available	$0.61\substack{+0.59\\-0.60}$		

Experimental results from PDG Live

Fit-Results: CP Asymmetries

	CP asy	ymmetries		CP asymmetries			
Channel	in p	percent	Channel	in percent			
Channel	Experimental	Theoretical	Channel	Experimental	Theoretical		
$B^- \to \pi^0 \pi^-$	3 ± 4	$5.45^{+22.02}_{-20.60}$	$B^- \rightarrow \eta \pi^-$	-14 ± 7	$-11.37^{+14.49}_{-26.90}$		
$B^- \to K^0 K^-$	4 ± 14	$18.82\substack{+36.93\\-30.83}$	$B^- \to \eta' \pi^-$	6 ± 16	$4.71_{-57.97}^{+59.79}$		
$\bar{B}^0 \to \pi^+\pi^-$	32 ± 4	$35.01^{+3.19}_{-22.29}$	$\bar{B}_s \to \eta K^0$	< 0.1	$0.10\substack{+0.00\\-100.07}$		
$\bar{B}^0 \to \pi^0 \pi^0$	33 ± 22	$-10.58^{+40.69}_{-89.40}$	$\bar{B}_s \to \eta' K^0$	Not available	$-0.58^{+100.57}_{-79.58}$		
$\bar{B}^0 \to K^0 \bar{K}^0$	-60 ± 70	$-6.88^{+85.39}_{-81.37}$	$B^- o \eta K^-$	-37 ± 8	$-42.23^{+42.23}_{-16.00}$		
$\bar{B}_s \to \pi^- K^+$	22.1 ± 1.5	$20.84^{+2.39}_{-2.57}$	$B^- o \eta' K^-$	0.4 ± 1.1	$0.63^{+3.98}_{-4.30}$		
$B^- \to \pi^0 K^-$	3.7 ± 2.1	$3.72_{-4.35}^{+7.19}$	$\bar{B}^0 \to \eta K^0$	Not available	$-0.01\substack{+40.07\\-0.02}$		
$B^- \to \pi^- K^0$	-1.7 ± 1.6	$-1.08^{+1.76}_{-2.32}$	$\bar{B}^0 \to \eta' K^0$	-6 ± 4	$0.03\substack{+4.82 \\ -11.69}$		
$\bar{B}^0 \to \pi^+ K^-$	-8.3 ± 0.4	$-8.38^{+8.38}_{-1.01}$	$\bar{B}^0 \to \eta \pi^0$	Not available	$-27.39^{+127.11}_{-72.58}$		
$\bar{B}^0 \to \pi^0 \bar{K}^0$	0 ± 13	$-0.97^{+19.35}_{-3.20}$	$\bar{B}^0 \to \eta' \pi^0$	Not available	$-43.67^{+143.63}_{-56.33}$		
$\bar{B}_s \to K^+ K^-$	-14 ± 11	$-10.58^{+10.58}_{-3.60}$	$\bar{B}_s \to \eta \pi^0$	Not available	$0.88\substack{+94.98\\-98.70}$		
$\bar{B}_s \to \pi^+\pi^-$	Not available	$17.56^{+11.84}_{-38.25}$	$\bar{B}_s ightarrow \eta' \pi^0$	Not available	$1.57\substack{+77.56\\-95.66}$		
$\bar{B}_s \to \pi^0 \pi^0$	Not available	$17.56^{+11.84}_{-38.25}$	$\bar{B}^0 o \eta\eta$	Not available	$3.46^{+96.50}_{-103.45}$		
$\bar{B}_s \to K^0 \bar{K}^0$	Not available	$0.31\substack{+5.07 \\ -4.59}$	$\bar{B}_s \to \eta \eta$	Not available	$14.29^{+76.81}_{-113.09}$		
$\bar{B}^0 \to K^+ K^-$	Not available	$-78.45_{-20.78}^{+161.99}$	$ar{B}^0 o \eta' \eta'$	Not available	$42.41_{-142.41}^{+57.55}$		
$\bar{B}_s \to \pi^0 K^0$	Not available	$13.74_{-113.73}^{+29.49}$	$\bar{B}_s \to \eta' \eta'$	Not available	$-2.05^{+15.29}_{-13.44}$		
			$\bar{B}^0 \to \eta' \eta$	Not available	$-12.32^{+112.32}_{-87.67}$		
			$\bar{B}_s \to \eta' \eta$	Not available	$3.43^{+96.36}_{-103.22}$		

Experimental results from PDG Live

SU(3) Confidence Regions

The topological and SU(3) invariant descriptions are just parametrizations of the decay amplitudes

A first principle technique to perform these calculations is QCD-Factorization

Beneke et al: 9905312 Beneke et al: 0308039

Naive Factorization

 $\langle K\pi | Q | B \rangle \sim F_{B \rightarrow K} f_{\pi}$

The topological and SU(3) invariant descriptions are just parametrizations of the decay amplitudes

A first principle technique to perform these calculations is QCD-Factorization

Beneke et al: 9905312 Beneke et al: 0308039

Naive Factorization

 $\langle K\pi | Q | B \rangle \sim F_{B \rightarrow K} f_{\pi}$

The topological and SU(3) invariant descriptions are just parametrizations of the decay amplitudes

A first principle technique to perform these calculations is QCD-Factorization

Beneke et al: 9905312 Beneke et al: 0308039

Naive Factorization

 $\langle K\pi | Q | B \rangle \sim F_{B \rightarrow K} f_{\pi}$

QCD-Factorization offers a systematic way to disentangle short from long distance physics considering $\Lambda_{QCD} \ll m_b$

$$\begin{aligned} & \mathsf{QCF \ Factorization \ decomposition} \\ \mathcal{A}^{\text{QCDF}} &= i \frac{G_F}{\sqrt{2}} \sum_{p=u,c} A_{M_1 M_2} \left\{ BM_1 \left(\alpha_1 \delta_{pu} \hat{U} + \alpha_4^p \hat{I} + \alpha_{4,EW}^p \hat{Q} \right) M_2 \Lambda_p \\ &\quad + BM_1 \Lambda_p \cdot \text{Tr} \left[\left(\alpha_2 \delta_{pu} \hat{U} + \alpha_3^p \hat{I} + \alpha_{3,EW}^p \hat{Q} \right) M_2 \right] \\ &\quad + B \left(\beta_2 \delta_{pu} \hat{U} + \beta_3^p \hat{I} + \beta_{3,EW}^p \hat{Q} \right) M_1 M_2 \Lambda_p \\ &\quad + B\Lambda_p \cdot \text{Tr} \left[\left(\beta_1 \delta_{pu} \hat{U} + \beta_4^p \hat{I} + b_{4,EW}^p \hat{Q} \right) M_1 \Lambda_p \cdot \text{Tr} M_2 \\ &\quad + B \left(\beta_{S2} \delta_{pu} \hat{U} + \beta_{S3}^p \hat{I} + \beta_{S3,EW}^p \hat{Q} \right) M_1 \Lambda_p \cdot \text{Tr} M_2 \\ &\quad + B \Lambda_p \cdot \text{Tr} \left[\left(\beta_{S1} \delta_{pu} \hat{U} + \beta_{S4}^p \hat{I} + b_{S4,EW}^p \hat{Q} \right) M_1 \right] \cdot \text{Tr} M_2 \right\} \\ \Lambda_p &= \begin{pmatrix} 0 \\ \lambda_p^{(d)} \\ \lambda_p^{(s)} \end{pmatrix}, \qquad \qquad \hat{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \hat{Q} &= \frac{3}{2} Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}, \qquad \qquad \hat{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \qquad \text{Beneke et al: 0308039} \end{aligned}$$

$$\begin{aligned} \mathsf{QCF} \ \mathsf{Factorization} \ \mathsf{decomposition} \\ \mathcal{A}^{\mathrm{QCDF}} &= i \frac{G_F}{\sqrt{2}} \sum_{p=u,c} A_{M_1M_2} \left\{ BM_1 \left(\alpha_1 \delta_{pu} \hat{U} + \alpha_4^p \hat{I} + \alpha_{4,EW}^p \hat{Q} \right) M_2 \Lambda_p \\ &+ BM_1 \Lambda_p \cdot \mathrm{Tr} \left[\left(\alpha_2 \delta_{pu} \hat{U} + \alpha_3^p \hat{I} + \alpha_{3,EW}^p \hat{Q} \right) M_2 \right] \\ &+ B \left(\beta_2 \delta_{pu} \hat{U} + \beta_3^p \hat{I} + \beta_{3,EW}^p \hat{Q} \right) M_1 M_2 \Lambda_p \\ &+ B\Lambda_p \cdot \mathrm{Tr} \left[\left(\beta_1 \delta_{pu} \hat{U} + \beta_4^p \hat{I} + b_{4,EW}^p \hat{Q} \right) M_1 M_2 \right] \\ &+ B \left(\beta_{S2} \delta_{pu} \hat{U} + \beta_{S3}^p \hat{I} + \beta_{S3,EW}^p \hat{Q} \right) M_1 \Lambda_p \cdot \mathrm{Tr} M_2 \\ &+ B\Lambda_p \cdot \mathrm{Tr} \left[\left(\beta_{S1} \delta_{pu} \hat{U} + \beta_{S4}^p \hat{I} + b_{S4,EW}^p \hat{Q} \right) M_1 \right] \cdot \mathrm{Tr} M_2 \right\} \end{aligned}$$

Weak annihilation contributions are non-factorizable

Weak annihilation contributions are non-factorizable One of the main drawbacks of QCDF

These contributions are power suppressed

 Λ_{OCD}/m_b

To address this problem educated Ansatz are made

$$X_A = \left(1 + \rho_A e^{i\phi_A}\right) \ln \frac{m_B}{\Lambda_h}$$

 $0 < \rho_A < 1$ $\Lambda_h \approx \mathcal{O}(\Lambda_{QCD})$ WHAT CAN WE LEARN ABOUT THE ANNIHILATION CONTRIBUTIONS FROM DATA?

CAN WE PROFIT FROM THE SU(3) INVARIANT FITS?

TO ACHIEVE THIS FIRST ESTABLISH A DICTIONARY BETWEEN SU(3) AND THE QCDF DECOMPOSITION OF THE PHYSICAL AMPLITUDES QCF Factorization-Topological Equivalence Equivalence between the QCF and the topological amplitudes $3\hat{x} = 1\hat{z}$

Decompose the matrix Q in terms of U and I $\hat{Q} = \frac{3}{2}\hat{U} - \frac{1}{2}\hat{I}$

Use the $\lambda_u^{(q)}$ and $\lambda_t^{(q)}$ factors $\Lambda_t = -\Lambda_u - \Lambda_c$

QCF Factorization-Topological Equivalence Equivalence between the QCF and the topological amplitudes

Decompose the matrix Q in terms of U and I $\hat{Q} = \frac{3}{2}\hat{U} - \frac{1}{2}\hat{I}$

Use the $\lambda_u^{(q)}$ and $\lambda_t^{(q)}$ factors $\Lambda_t = -\Lambda_u - \Lambda_c$ $\tilde{C}_r = \left[\tilde{T} + \frac{3}{2}\tilde{P}_2^u - \frac{3}{2}\tilde{P}_2^c\right]\hat{U} \otimes \Lambda_u + \left[\tilde{P}_1^u - \tilde{P}_1^c - \frac{1}{2}\left\{\tilde{P}_2^u - \tilde{P}_2^c\right\}\right]\hat{I} \otimes \Lambda_u$ $-\frac{3}{2}\tilde{P}_2^c\hat{U} \otimes \Lambda_t - \left[\tilde{P}_1^c - \frac{\tilde{P}_2^c}{2}\right]\hat{I} \otimes \Lambda_t,$ QCF Factorization-Topological Equivalence Equivalence between the QCF and the topological amplitudes

Decompose the matrix Q in terms of U and I $\hat{Q} = \frac{3}{2}\hat{U} - \frac{1}{2}\hat{I}$

Use the $\lambda_u^{(q)}$ and $\lambda_t^{(q)}$ factors $\Lambda_t = -\Lambda_u - \Lambda_c$ $\tilde{\hat{C}}_r = \left[\tilde{T} + \frac{3}{2}\tilde{P}_2^u - \frac{3}{2}\tilde{P}_2^c\right]\hat{U}\otimes\Lambda_u + \left[\tilde{P}_1^u - \tilde{P}_1^c - \frac{1}{2}\left\{\tilde{P}_2^u - \tilde{P}_2^c\right\}\right]\hat{I}\otimes\Lambda_u$ $-\frac{3}{2}\tilde{P}_2^c\hat{U}\otimes\Lambda_t - \left[\tilde{P}_1^c - \frac{\tilde{P}_2^c}{2}\right]\hat{I}\otimes\Lambda_t,$ $(\tilde{\hat{C}}_r)_k^{ij} = \left[\tilde{T} + \frac{3}{2}\tilde{P}_2^u - \frac{3}{2}\tilde{P}_2^c\right]\hat{U}_k^i(\Lambda_u)^j + \left[\tilde{P}_1^u - \tilde{P}_1^c - \frac{1}{2}\left\{\tilde{P}_2^u - \tilde{P}_2^c\right\}\right]\delta_k^i(\Lambda_u)^j$ $-\frac{3}{2}\tilde{P}_2^c\hat{U}_k^i(\Lambda_t)^j - \left[\tilde{P}_1^c - \frac{\tilde{P}_2^c}{2}\right]\delta_k^i(\Lambda_t)^j$ QCF Factorization-Topological Equivalence Equivalence between the QCF and the topological amplitudes

Decompose the matrix Q in terms of U and I $\hat{Q} = \frac{3}{2}\hat{U} - \frac{1}{2}\hat{I}$

Use the $\lambda_u^{(q)}$ and $\lambda_t^{(q)}$ factors $\Lambda_t = -\Lambda_u - \Lambda_c$ $\tilde{C}_r = \left[\tilde{T} + \frac{3}{2}\tilde{P}_2^u - \frac{3}{2}\tilde{P}_2^c\right]\hat{U}\otimes\Lambda_u + \left[\tilde{P}_1^u - \tilde{P}_1^c - \frac{1}{2}\left\{\tilde{P}_2^u - \tilde{P}_2^c\right\}\right]\hat{I}\otimes\Lambda_u$ $-\frac{3}{2}\tilde{P}_2^c\hat{U}\otimes\Lambda_t - \left[\tilde{P}_1^c - \frac{\tilde{P}_2^c}{2}\right]\hat{I}\otimes\Lambda_t,$ $(\tilde{C}_r)_k^{ij} = \left[\tilde{T} + \frac{3}{2}\tilde{P}_2^u - \frac{3}{2}\tilde{P}_2^c\right]\hat{U}_k^i(\Lambda_u)^j + \left[\tilde{P}_1^u - \tilde{P}_1^c - \frac{1}{2}\left\{\tilde{P}_2^u - \tilde{P}_2^c\right\}\right]\delta_k^i(\Lambda_u)^j$ $-\frac{3}{2}\tilde{P}_2^c\hat{U}_k^i(\Lambda_t)^j - \left[\tilde{P}_1^c - \frac{\tilde{P}_2^c}{2}\right]\delta_k^i(\Lambda_t)^j$

The connection between the topological decomposition and the QCD-factorization is established through

$$U_k^i (\Lambda_u)^j = \bar{H}_k^{ij}, \qquad U_k^i (\Lambda_t)^j = \tilde{H}_k^{ij}, \qquad (\Lambda_t)^i = \tilde{H}^i.$$

QCF Factorization-Topological Equivalence We consider the following results

 $\alpha_{3}^{u} = \alpha_{3}^{c} = \alpha_{3}, \quad \alpha_{3,EW}^{u} = \alpha_{3,EW}^{c} = \alpha_{3,EW}, \quad \beta_{i}^{u} = \beta_{i}^{c} = \beta_{i}, \quad b_{i}^{u} = b_{i}^{c} = b_{i}$ $|\alpha_{4,EW}^c - \alpha_{4,EW}^u| < 10^{-3}$ $|\alpha_{4}^{c} - \alpha_{4}^{u}| \sim 2\%$ **NNLO NLO** Bell, Beneke, Huber, Li:2002.03262 QCDF to topological transformation rules $T = A_{M_1 M_2} \alpha_1,$ $C = A_{M_1 M_2} \alpha_2, \qquad \qquad E = A_{M_1 M_2} \beta_1,$ $A = A_{M_1M_2}\beta_2, \qquad T_{AS} = A_{M_1M_2}\beta_{S1}, \qquad T_{ES} = A_{M_1M_2}\beta_{S2},$ No mar Bas ---- 7

$$S = -A_{M_1M_2} \left[\alpha_3 + \beta_{S3} - \frac{\alpha_{3,EW}}{2} - \frac{\beta_{S3,EW}}{2} \right],$$
$$P = -A_{M_1M_2} \left[\alpha_4^c + \beta_3 - \frac{\alpha_{4,EW}^c}{2} - \frac{\beta_{3,EW}}{2} \right],$$
$$A_{M_1M_2} = (1.25 \pm 0.17) \text{ GeV}^3$$

Further details on the χ^2 -fit

Best QCDF fit point (modulus in GeV³)

 $A_{M_1M_2}\alpha_1 = 1.072 + 5.596 \times 10^{-5}i,$ $A_{M_1M_2}\beta_1 = -0.117 - 0.007i,$ $A_{M_1M_2}\beta_{S1} = -0.074 - 0.0112i,$ $A_{M_1M_2}\alpha_{3,EW} = -0.193 - 0.045i,$ $A_{M_1M_2}\beta_{3,EW} = 0.005 - 0.006i,$ $A_{M_1M_2}\beta_{S3,EW} = -0.188 + 0.007i,$ $A_{M_1M_2}\beta_4 = -0.003 + 0.013i,$ $A_{M_1M_2}(\alpha_3 + \beta_{S3}) = 0.230 + 0.067i,$

 $A_{M_1M_2}\alpha_2 = 0.136 + 0.073i,$ $A_{M_1M_2}\beta_2 = A_{M_1M_2}\beta_1,$ $A_{M_1M_2}\beta_{S2} = 0.054 - 0.049i,$ $A_{M_1M_2}\alpha^c_{4,EW} = 0.181 + 0.053i,$ $A_{M_1M_2}b_{4,EW} = A_{M_1M_2}\beta_{3,EW},$ $A_{M_1M_2}b_{S4,EW} = 0.061 + 0.098i,$ $A_{M_1M_2}\beta_{S4} = 0.031 - 0.030i,$ $A_{M_1M_2}(\alpha_4 + \beta_3) = -0.242 - 0.062i$

Obtained by mapping the SU(3)-fit results into the QCDF amplitudes.

QCF Factorization confidence regions

Summary and Outlook

- We have established a set of transformation rules between the QCD factorization and the topological representation of physical amplitudes.
- By fitting to data we have determined bounds for different QCDF amplitudes.
- The real and imaginary components of the weak annihilation amplitudes as allowed by data can be between 4% and 30%.
- SU(3) symmetry asummed so far.
- Introduce SU(3) breaking by fitting to data the weak annihilation amplitudes combining NLO and NNLO results for independent channels

Further details on the χ^2 -fit

Constraints from QCDF

Taking into account $\alpha_1(\pi\pi) = 1.000^{+0.029}_{-0.069} + (0.011^{+0.023}_{-0.050})i_1$ Beneke Huber et al: 0911.3655 We impose $\Re(\alpha_1) = 1.000^{+0.138}_{-0.138}$ In addition we require $T_{PA} = T_{SS} = T_S = 0, \ |T_P| < 10\%$ Phenomenological constraints $Br(B_s \to \pi^0 \pi^0) < 2.10 \times 10^{-4}, \quad Br(B_s \to \eta \pi^0) < 10^{-3},$ $Br(B^0 \to \eta \eta) < 10^{-6}, \quad Br(B^0 \to \eta' \eta') < 1.7 \times 10^{-6},$ $Br(B^0 \to \eta' \eta) < 1.2 \times 10^{-6}, \quad A_{CP}(B_s \to \eta K^0) < 10^{-3}.$

SU(3) amplitudes from data

Include η contributions in the Feldmann–Kroll–Stech scheme

 $heta_{FKS}$ mixing angle T. Feldmann et al: 9802409

Channel	A_3^T	C_{3T}^T	A_6^T	C_6^T	A_{15}^{T}	C_{15}^{T}	B_3^T	B_6^T	B_{15}^{T}	D_3^T
$B^- \to \eta_q \pi^-$	0	$\sqrt{2}$	$\sqrt{2}$	0	$3\sqrt{2}$	$2\sqrt{2}$	0	$\sqrt{2}$	$3\sqrt{2}$	$\sqrt{2}$
$B^- \to \eta_s \pi^-$	0	0	0	1	0	-1	0	1	3	1
$B^0 \to \eta_q \pi^0$	0	-1	-1	0	5	2	0	-1	5	-1
$B^0 \to \eta_s \pi^0$	0	0	0	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	$\frac{5}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$
$B_s \to \eta_q K^0$	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	$-\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2}$
$B_s \to \eta_s K^0$	0	1	-1	0	-1	-2	0	-1	-1	1
$B^- \to \eta_q K^-$	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{3}{\sqrt{2}}$	$\frac{5}{\sqrt{2}}$	0	$\sqrt{2}$	$3\sqrt{2}$	$\sqrt{2}$
$B^- \to \eta_s K^-$	0	1	1	0	3	-2	0	1	3	1
$B^0 \to \eta_q K^0$	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	$-\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2}$
$B^0 \to \eta_s K^0$	0	1	-1	0	-1	-2	0	-1	-1	1
$B_s \to \eta_q \pi^0$	0	0	-2	0	4	0	0	-2	4	0
$B_s \to \eta_s \pi^0$	0	0	0	$-\sqrt{2}$	0	$2\sqrt{2}$	0	$-\sqrt{2}$	$2\sqrt{2}$	0
$B^0 \to \eta_q \eta_q$	1	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	2	-1	1	1
$B^0 o \eta_q \eta_s$	0	Ō	0	$\frac{1}{\sqrt{2}}$	Ō	$-\frac{1}{\sqrt{2}}$	$2\sqrt{2}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$B^0 \to \eta_s \eta_s$	1	0	1	0	-1	0	1	1	-1	0
$B_s \to \eta_q \eta_q$	1	0	0	0	1	0	2	0	2	0
$B_s \to \eta_q \eta_s$	0	0	0	0	0	$\sqrt{2}$	$2\sqrt{2}$	0	$-\sqrt{2}$	$\sqrt{2}$
$B_s \to \eta_s \eta_s$	1	1	0	0	-2	-2	1	0	-2	1