Portals effective theories

[2105.06477]

Jan Hajer

Centro de Física Teórica de Partículas, Instituto Superior Técnico, Universidade de Lisboa

8th Workshop on Theory, Phenomenology and Experiments in Flavour Physics FPCapri2022

WHERE IS THE NEW PHYSICS HIDING?

Coupling

Heavy neutral leptons (HNLs)

NA62

Fixed target experiment in the North Area using the CERN SPS with the goal to

- measure the very rare kaon decay $K^+ \to \pi^+ \nu \overline{\nu}$
- = 10 % measurement of the CKM parameter $|V_{td}|$

NA62

Fixed target experiment in the North Area using the CERN SPS with the goal to

- measure the very rare kaon decay $K^+ \to \pi^+ \nu \overline{\nu}$
- = 10 % measurement of the CKM parameter $|V_{td}|$

Hidden sectors at NA62

- it can also be used to search for hidden new physics χ such as a heavy neutrino
- Target mode
- only K^+ induced processes

NA62

Fixed target experiment in the North Area using the CERN SPS with the goal to

- measure the very rare kaon decay $K^+ \to \pi^+ \nu \overline{\nu}$
- = 10 % measurement of the CKM parameter $|V_{td}|$

Hidden sectors at NA62

- it can also be used to search for hidden new physics χ such as a heavy neutrino
- Target mode
- only K⁺ induced processes
- Dump mode
- D- and B-meson induced processes dominate

pure U_{μ}^2

Axion like particles (ALP)

ALPs exclusion

Effective field theories

Effective theories of the Standard Model

Effective field theories

- include all fields of interest
- consist of all operators allowed by symmetry of the theory
- non-renormaliseable operators encode heavy (new) physics

Effective theories of the Standard Model

Effective field theories

- include all fields of interest
- consist of all operators allowed by symmetry of the theory
- non-renormaliseable operators encode heavy (new) physics

Standard Model EFT (SMEFT)

- consists of all SM fields
- operators compatible with SM gauge group
- used to constrain new physics (NP) models
- see also Higgs EFT

Light EFT (LEFT)

- heavy SM fields are integrated out
- generalises Fermi's four fermion theory
- SM (with extensions) at low energies

Effective theories of the Standard Model

Effective field theories

- include all fields of interest
- consist of all operators allowed by symmetry of the theory
- non-renormaliseable operators encode heavy (new) physics

Standard Model EFT (SMEFT)

- consists of all SM fields
- operators compatible with SM gauge group
- used to constrain new physics (NP) models
- see also Higgs EFT

Light EFT (LEFT)

- heavy SM fields are integrated out
- generalises Fermi's four fermion theory
- SM (with extensions) at low energies

Chiral perturbation theory (χPT)

- exploits light quark flavour symmetry
- light meson interactions

Heavy quark EFT (HQET)

- exploits mass hierarchy within meson
- interactions of mesons with one heavy quark

non-relativistic QCD (NRQCD)

- interactions of mesons with two heavy quarks
- treats heavy mesons non-relativistically

EFTs of the SM and where to use them

Portal effective theories

Portal effective field theories

Hidden sector	Secluded sector	
contains mediator fieldscan entail a complicated secluded sector	 fields which are not directly coupled to SM additional interactions of the mediators mass generation mechanism for mediator 	
Mediator fields		
interact feebly with the SMforms with the SM fields the portal operators	Incorporated of necessary portal suppression into EFT power counting	
SM and heavy NP	Hidden sector with light NP	
EFT fields and symmetries Med	iator fields Secluded fields	
SMEFT, HEFT, LEFT, 0, $\frac{1}{2}$, NRQCD, HQET, χ PT, s_i , ξ_j ,	1, $3/2$, 2 Additional fields not directly v_k^{μ} , ξ_l^{μ} , $t_m^{\mu\nu}$ interacting with the SM	
SM operators Portal operators	Hidden operators	
$O_n^{\text{SM}} \qquad O_{nm}^{\text{portal}} = O_n^{\text{SM}} O_m^{\text{hidden}} \\ \uparrow \\ \frac{\text{Portal currents}}{J_n^{\text{portal}} = \sum_m O_{nm}^{\text{portal}}}$	O ^{hidden}	
PET framework		

Portal currents

SM operators	For example: The axial anomaly	
$O^{SM}_n = O^{SM}_n(q, \ell, \gamma, g, \dots)$	$\mathcal{L}^{ heta}_{Q} = - heta rac{\langle \widetilde{G}_{\mu u} G^{\mu u} angle_{c}}{(A-)^{2}}$	
Hidden operators	$G_{\mu\nu}$ Gluon field strength	
$O^{hidden}_m = O^{hidden}_m(s_i,\xi_j,v^\mu_k,\dots)$	θ QCD vacuum angle	
Form portal operators	In terms of current $ heta$ and operator w	
$O_{nm}^{ m portal}=O_n^{ m SM}O_m^{ m hidden}$	${\cal L}^{ heta}_Q = - heta w \qquad w = rac{\langle \widetilde{G}_{\mu u} G^{\mu u} angle_c}{(4\pi)^2}$	
Can be collected in Portal currents	Scalar axial current $S_{ heta}$ contains NP	
$J_n^{ m portal} = \sum_m O_{nm}^{ m portal}$	$ heta o \Theta = heta + S_{ heta}$	
Capturing the portal interactions of the SM	E.g. Axion like particle a	
$\mathcal{L}^{portal} = \sum_n J_n^{portal} O_n^{SM}$	$S_{ heta}=c_{ heta}rac{a}{f_{a}}$	
	More complicated models	
	$S_{ heta} = c_{ heta} rac{m{a}}{f_{m{a}}} + \dots$	

Portal SMEFT operators

Renormaliseable operators

	d	Higgs	Yukawa + h.c.	Fermions	Gauge bosons
Si	3	$s_i H ^2$			
0,	4	$s_i s_j H ^2$			
$\xi_a + h.c.$	4		$\xi_{a}\ell_{b}\widetilde{H}^{\dagger}$		
v ^µ	4	$ \begin{array}{c} v_{\mu}v^{\mu} H ^{2}\\ \partial_{\mu}v^{\mu} H ^{2}\\ v^{\mu}H^{\dagger}\overleftrightarrow{D}_{\mu}H \end{array} $		$v^{\mu}q^{\dagger}_{a}\overline{\sigma}_{\mu}q_{b}$ $v^{\mu}\overline{u}^{\dagger}_{a}\sigma_{\mu}\overline{u}_{b}$ $v^{\mu}\overline{d}^{\dagger}_{a}\sigma_{\mu}\overline{d}_{b}$ $v^{\mu}\ell^{\dagger}_{a}\overline{\sigma}_{\mu}\ell_{b}$ $v^{\mu}\overline{e}^{\dagger}_{a}\sigma_{\mu}\overline{e}_{b}$	

Portal SMEFT operators

Renormaliseable operators

	d	Higgs	Yukawa + h.c.	Fermions	Gauge bosons
Si	3	$s_i H ^2$			
	4	$s_i s_j H ^2$			
$\xi_a + h.c.$	4		$\xi_a \ell_b \widetilde{H}^\dagger$		
v^{μ}	4	$ \begin{array}{c} v_{\mu}v^{\mu} H ^{2} \\ \partial_{\mu}v^{\mu} H ^{2} \\ v^{\mu}H^{\dagger}\vec{D}_{\mu}H \end{array} $		$ \begin{array}{l} v^{\mu} q^{\dagger}_{a} \overline{\sigma}_{\mu} q_{b} \\ v^{\mu} \overline{u}^{\dagger}_{a} \sigma_{\mu} \overline{u}_{b} \\ v^{\mu} \overline{d}^{\dagger}_{a} \sigma_{\mu} \overline{d}_{b} \\ v^{\mu} \ell^{\dagger}_{a} \overline{\sigma}_{\mu} \ell_{b} \\ v^{\mu} \overline{e}^{\dagger}_{a} \sigma_{\mu} \overline{e}_{b} \end{array} $	

Non-renormaliseable operators of dimension 5

	d	Higgs	Yukawa + h.c.	Fermions	Gauge bosons
Si	5	$s_i s_j s_k H ^2$ $s_i D^{\mu} H^{\dagger} D_{\mu} H$ $s_i H ^4$	$s_i q_a \overline{u}_b \widetilde{H}^{\dagger}$ $s_i q_a \overline{d}_b H^{\dagger}$ $s_i \ell_a \overline{e}_b H^{\dagger}$		$\begin{split} s_i G^a_{\mu\nu} G^{\mu\nu}_a \\ s_i W^a_{\mu\nu} W^{\mu\nu}_a \\ s_i B_{\mu\nu} B^{\mu\nu} \\ s_i G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a \\ s_i W^a_{\mu\nu} \widetilde{W}^{\mu\nu}_a \\ s_i B_{\mu\nu} \widetilde{B}^{\mu\nu} \end{split}$
$\xi_a + h.c.$	5	$\xi_a \xi_b H ^2$	$\xi_a^\dagger \overline{\sigma}^\mu \ell_b D_\mu \widetilde{H}^\dagger$		$\xi_a \sigma^{\mu u} \xi_b B_{\mu u}$

Portal SMEFT currents

Portal Lagrangian

$$\mathcal{L}_{\mathsf{portal}} = \mathcal{L}_{\mathsf{EW}}^{H} + \mathcal{L}_{\mathsf{EW}}^{Y} + \mathcal{L}_{\mathsf{EW}}^{F} + \mathcal{L}_{\mathsf{EW}}^{V}$$
 .

Individual parts

$$\begin{split} \mathcal{L}_{\mathsf{EW}}^{H} &= S_{m}^{H} |H|^{2} + \frac{1}{2} S_{\lambda}^{H} |H|^{4} + S_{\kappa}^{H} D^{\mu} H^{\dagger} D_{\mu} H + \mathrm{i} V_{H}^{\mu} H^{\dagger} \overleftrightarrow{D}_{\mu} H , \\ \mathcal{L}_{\mathsf{EW}}^{Y} &= \mathbf{S}_{m}^{e} \ell \overline{e} H^{\dagger} + \mathbf{S}_{m}^{d} q \overline{d} H^{\dagger} + \mathbf{S}_{m}^{u} q \overline{u} \widetilde{H}^{\dagger} + \Xi \ell \widetilde{H}^{\dagger} + \Xi_{\mu} \ell D^{\mu} \widetilde{H}^{\dagger} + \mathrm{h.c.} , \\ \mathcal{L}_{\mathsf{EW}}^{F} &= \mathbf{V}_{q}^{\mu} q^{\dagger} \overline{\sigma}_{\mu} q + \mathbf{V}_{\ell}^{\mu} \ell^{\dagger} \overline{\sigma}_{\mu} \ell + \mathbf{V}_{u}^{\mu} \overline{u}^{\dagger} \sigma_{\mu} \overline{u} + \mathbf{V}_{d}^{\mu} \overline{d}^{\dagger} \sigma_{\mu} \overline{d} + \mathbf{V}_{e}^{\mu} \overline{e}^{\dagger} \sigma_{\mu} \overline{e} , \\ \mathcal{L}_{\mathsf{EW}}^{V} &= (S_{\omega}^{B} B_{\mu\nu} + S_{\theta}^{B} \widetilde{B}_{\mu\nu} + T_{\mu\nu}^{B}) B^{\mu\nu} + (S_{\omega}^{W} W_{\mu\nu} + S_{\theta}^{W} \widetilde{W}_{\mu\nu}) W^{\mu\nu} + (S_{\omega} G_{\mu\nu} + S_{\theta} \widetilde{G}_{\mu\nu}) G^{\mu\nu} . \end{split}$$

Portal SMEFT

- at dimension 5 is encoded in 21 portal currents
- serves as starting point for construction of EFT for lower energies

Portal LEFT currents

After integrating out the heavy SM bosons

interactions are described by operators of dimension 5 + 2 = 7

QCD operators and portal currents

SM operatorcurrent $w = \langle \widetilde{G}_{\mu\nu} G^{\mu\nu} \rangle_c / (4\pi)^2$ $\Theta = \theta + S_{\theta}$ vacuum angle $\Upsilon = \langle G_{\mu\nu} G^{\mu\nu} \rangle_c / (4\pi)^2$ $\Omega = 2\pi/\alpha + S_{\omega}$ fine structure constant $Q = q\overline{q}$ $M = m + S_m$ mass

Gluon fields are normalised such that $D_{\mu} = \partial_{\mu} - i G_{\mu}$.

Portal LEFT current Lagrangian	Constant SM currents	
$\mathcal{L}_{oldsymbol{Q}} = arDeta w - arOmega arY - \langle oldsymbol{M} oldsymbol{Q} angle_f$	can contain dynamical NP contributions	

Electroweak induced portal LEFT currents

Electroweak induced portal LEFT currents

 $\delta \mathcal{L}_Q^{\mathsf{EW}} = -\langle (\boldsymbol{L}^{\mu} \boldsymbol{Q}_{\mu} + \boldsymbol{R}^{\mu} \overline{\boldsymbol{Q}}_{\mu})
angle_f - \langle (\boldsymbol{\Gamma} \widetilde{\boldsymbol{Q}} + T^{\mu
u} \boldsymbol{Q}_{\mu
u} + \mathsf{h.c.})
angle_f / (4 \pi
u)^2$

Flavour symmetry in the quark sector

Kinetic Lagrangian is invariant under global flavour rotations

$$q o oldsymbol{V} q$$
 , $\overline{q} o \overline{q} \overline{oldsymbol{V}}$, $(oldsymbol{V}, \overline{oldsymbol{V}}) \in \mathcal{G}_{LR} = {f U}(n_f)_L imes {f U}(n_f)_R$

Quark bilinear transform as

 $q\overline{q}: \ \mathbf{Q} o \mathbf{V} \mathbf{Q} \overline{\mathbf{V}}, \qquad q\sigma_{\mu} q^{\dagger}: \ \mathbf{Q}_{\mu} o \mathbf{V} \mathbf{Q}_{\mu} \mathbf{V}^{\dagger}, \qquad q\sigma_{\mu\nu} \overline{q}: \ \mathbf{Q}_{\mu\nu} o \mathbf{V} \mathbf{Q}_{\mu\nu} \overline{\mathbf{V}},$ $q\sigma_{\mu\nu} G^{\mu\nu} \overline{q}: \ \widetilde{\mathbf{Q}} o \mathbf{V} \widetilde{\mathbf{Q}} \overline{\mathbf{V}}, \qquad \overline{q}^{\dagger} \overline{\sigma}^{\mu} \overline{q}: \ \overline{\mathbf{Q}}_{\mu} o \overline{\mathbf{V}}^{\dagger} \overline{\mathbf{Q}}_{\mu} \overline{\mathbf{V}}.$

Flavour symmetry in the quark sector

Kinetic Lagrangian is invariant under global flavour rotations

$$q o oldsymbol{V} q$$
 , $\overline{q} o \overline{q} \overline{oldsymbol{V}}$, $(oldsymbol{V}, \overline{oldsymbol{V}}) \in \mathcal{G}_{LR} = {f U}(n_f)_L imes {f U}(n_f)_R$

Quark bilinear transform as

 $q\overline{q}: \ \mathbf{Q} o \mathbf{V} \mathbf{Q} \overline{\mathbf{V}}, \qquad q\sigma_{\mu} q^{\dagger}: \ \mathbf{Q}_{\mu} o \mathbf{V} \mathbf{Q}_{\mu} \mathbf{V}^{\dagger}, \qquad q\sigma_{\mu\nu} \overline{q}: \ \mathbf{Q}_{\mu\nu} o \mathbf{V} \mathbf{Q}_{\mu\nu} \overline{\mathbf{V}},$ $q\sigma_{\mu\nu} G^{\mu\nu} \overline{q}: \ \widetilde{\mathbf{Q}} o \mathbf{V} \widetilde{\mathbf{Q}} \overline{\mathbf{V}}, \qquad \overline{q}^{\dagger} \overline{\sigma}^{\mu} \overline{q}: \ \overline{\mathbf{Q}}_{\mu} o \overline{\mathbf{V}}^{\dagger} \overline{\mathbf{Q}}_{\mu} \overline{\mathbf{V}}.$

Currents transform as

$$oldsymbol{m} o \overline{oldsymbol{V}}^\dagger oldsymbol{m} oldsymbol{V}^\dagger \,, \qquad oldsymbol{ au}^{\mu
u} o \overline{oldsymbol{V}}^\dagger oldsymbol{ au}^{\mu
u} oldsymbol{V}^\dagger \,, \qquad oldsymbol{ au} o oldsymbol{ au} - {
m i} \langle \ln oldsymbol{V} \overline{oldsymbol{V}}
angle_f \,,$$

Flavour symmetry in the quark sector

Kinetic Lagrangian is invariant under global flavour rotations

$$q o oldsymbol{V} q$$
 , $\overline{q} o \overline{q} \overline{oldsymbol{V}}$, $(oldsymbol{V}, \overline{oldsymbol{V}}) \in \mathcal{G}_{LR} = {f U}(n_f)_L imes {f U}(n_f)_R$

Quark bilinear transform as

 $q\overline{q}: \ \mathbf{Q} o \mathbf{V} \mathbf{Q} \overline{\mathbf{V}}, \qquad q\sigma_{\mu} q^{\dagger}: \ \mathbf{Q}_{\mu} o \mathbf{V} \mathbf{Q}_{\mu} \mathbf{V}^{\dagger}, \qquad q\sigma_{\mu\nu} \overline{q}: \ \mathbf{Q}_{\mu\nu} o \mathbf{V} \mathbf{Q}_{\mu\nu} \overline{\mathbf{V}},$ $q\sigma_{\mu\nu} G^{\mu\nu} \overline{q}: \ \widetilde{\mathbf{Q}} o \mathbf{V} \widetilde{\mathbf{Q}} \overline{\mathbf{V}}, \qquad \overline{q}^{\dagger} \overline{\sigma}^{\mu} \overline{q}: \ \overline{\mathbf{Q}}_{\mu} o \overline{\mathbf{V}}^{\dagger} \overline{\mathbf{Q}}_{\mu} \overline{\mathbf{V}}.$

Currents transform as

$$oldsymbol{m} o \overline{oldsymbol{V}}^\dagger oldsymbol{m} oldsymbol{V}^\dagger \,, \qquad oldsymbol{ au}^{\mu
u} o \overline{oldsymbol{V}}^\dagger oldsymbol{ au}^{\mu
u} oldsymbol{V}^\dagger \,, \qquad oldsymbol{ au} o oldsymbol{ au} o oldsymbol{V}^\dagger oldsymbol{ au}^{\mu
u} oldsymbol{V}^\dagger \,, \qquad oldsymbol{ au} o oldsymbol{ au} o oldsymbol{ au}^\dagger oldsymbol{ au}^{\mu
u} oldsymbol{V}^\dagger \,, \qquad oldsymbol{ au} o oldsymbol{ au} o oldsymbol{ au}^\dagger oldsymbol{ au}^{\mu
u} oldsymbol{V}^\dagger \,, \qquad oldsymbol{ au} o oldsymbol{ au} o oldsymbol{ au}^\dagger oldsymbol{ au}^{\mu
u} oldsymbol{V}^\dagger \,, \qquad oldsymbol{ au} o oldsymbol{ au} o oldsymbol{ au} o oldsymbol{ au}^\dagger oldsymbol{ au}^{\mu
u} oldsymbol{V}^\dagger \,,$$

Path integral is invariant under local flavour rotations

$$l^{\mu}
ightarrow oldsymbol{V} l^{\mu} oldsymbol{V}^{\dagger} + \mathrm{i} oldsymbol{V} \partial^{\mu} oldsymbol{V}^{\dagger}$$
 , $r^{\mu}
ightarrow \overline{oldsymbol{V}}^{\dagger} r^{\mu} \overline{oldsymbol{V}} + \mathrm{i} \, \overline{oldsymbol{V}}^{\dagger} \partial^{\mu} \overline{oldsymbol{V}}$

Flavour covariant quark derivatives

$$oldsymbol{D}^\mu q = \partial^\mu q - \mathrm{i}\, l^\mu q$$
 , $oldsymbol{D}^\mu \overline{q}^\dagger = \partial^\mu \overline{q}^\dagger - \mathrm{i}\, r^\mu \overline{q}^\dagger$

Field-strength tensors for the left- and right-handed currents

 $l^{\mu
u}=\partial^{\mu}l^{
u}-\partial^{
u}l^{\mu}-{
m i}[l^{\mu},l^{
u}]\,,\qquad\qquad r^{\mu
u}=\partial^{\mu}r^{
u}-\partial^{
u}r^{\mu}-{
m i}[r^{\mu},r^{
u}]\,.$

14

Portal LEFT operators

Portal LEFT operators

Scala	ar box diagram	Scalar penguin diagram		Fermionic penguin diagram	
d^{\dagger} - $ u$ –	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ & & & & \\ & & & &$	$d^{\dagger} \xrightarrow{W_{\downarrow}} d \xrightarrow{W_{\downarrow}} d$	$ \begin{array}{c} $	$ \begin{array}{c} d^{\dagger} & \downarrow u^{\dagger} \gamma \\ W & \downarrow u^{\dagger} \gamma \\ d & \downarrow u^{\dagger} \chi \\ z & & \xi \\ \end{array} $	
Quar	k flavour conserving opera	ators	Quark flavour viola	ting operators	
	d Scalar Vector Ga	uge	d Two quarks	Quark dipole Four fermions	
Si	$\frac{4 s_i \overline{\psi}\psi}{s_i s_j \overline{\psi}\psi} \qquad \qquad$; F _{μν} F ^{μν} : F Ĕ ^{μν}	$ \begin{array}{c} s_i s_j s_k \overline{d} d \\ 6 \partial^2 s_i \overline{d} d \\ s_i \partial_\mu s_j \ d^{\dagger} \overline{\sigma}^{\mu} d \end{array} $	$ s_i F^{\mu\nu} \overline{d} \sigma_{\mu\nu} d s_i G^{\mu\nu} \overline{d} \sigma_{\mu\nu} d $	
	5 5 5 5	$G_{\mu\nu}G^{\mu\nu}$ $G_{\mu\nu}G^{\mu\nu}$ $G_{\mu\nu}G^{\mu\nu}$	$s_i s_i s_j s_k s_l \overline{d} d$	$s_i \ d^{\dagger} \overline{q}^{\dagger} \ \overline{q} d$ $s_i \ q^{\dagger} \overline{\sigma}^{\mu} q \ q^{\dagger} \overline{\sigma}_{\mu} q$	
ξa	3 ξ _a ν		1	$s_i \ a^{\dagger} \overline{\sigma}_{\mu} \nu \ a^{\dagger} \overline{\sigma}_{\mu} d^{\dagger}$ $s_i \ e^{\dagger} \overline{\sigma}_{\mu} \nu \ u^{\dagger} \overline{\sigma}^{\mu} d$	
+ h.c.	5 $\xi_a \overline{\sigma}_{\mu\nu} \iota$	ν Ε ^{μν} 5. Ε ^{μν}		$\qquad \qquad $	
ν _μ	$4 \qquad v_{\mu} \psi^{\dagger} \overline{\sigma}^{\mu} \psi$,	$ \begin{array}{ccc} \xi_{a} & & \xi_{a}^{\dagger} \sigma_{\mu} e \ d^{\dagger} \overline{\sigma}^{\mu} \\ \text{h.c.} & & \xi_{a}^{\dagger} \overline{\sigma}_{\mu} \nu \ d^{\dagger} \overline{\sigma}^{\mu} \\ \hline \end{array} $	u d	

Portal chiral perturbation theory

Chiral perturbation theory

Flavour symmetry is non-linearly realised

$$\boldsymbol{g}(x) = \exp \frac{\mathrm{i}\,\boldsymbol{\Phi}(x)}{f_0}$$

Matrix valued field of the light mesons

$$oldsymbol{\Phi} = egin{pmatrix} rac{\pi^0}{\sqrt{2}} & \pi^+ \ \pi^- & -rac{\pi^0}{\sqrt{2}} \end{pmatrix}$$

Energy scale given by meson decay constant

$$f_0\simeq 63.9\,{
m MeV}$$
 , $\Lambda_{{
m \chi PT}}=4\pi f_0$

Left-handed Maurer-Cartan field

$$oldsymbol{u}_{\mu}={
m i}\,oldsymbol{g}\partial_{\mu}oldsymbol{g}^{\dagger}$$

Mass dimensions

$$[oldsymbol{\Phi}]=1$$
 , $[oldsymbol{g}]=0$, $[oldsymbol{u}_{\mu}]=1$

Chiral perturbation theory (χPT) models

SU(2)
$$\pi^{\pm}$$
, π^{0}
SU(3) K^{\pm} , K^{0} , \overline{K}^{0} , η_{8}
U(3) η_{1}
only U(3) χ PT captures axion interactions

Chiral perturbation theory

 χPT models Flavour symmetry is non-linearly realised SU(2) π^{\pm} , π^{0} $\boldsymbol{g}(x) = \exp \frac{i \boldsymbol{\Phi}(x)}{f_0}$ SU(3) K^{\pm} , K^0 , \overline{K}^0 , η_8 $U(3) \eta_1$ Matrix valued field of the light mesons only U(3) χ PT captures axion interactions $oldsymbol{\Phi} = egin{pmatrix} rac{\eta_8}{\sqrt{6}} + rac{\pi_8}{\sqrt{2}} & \pi^+ & K^+ \ \pi^- & rac{\eta_8}{\sqrt{6}} - rac{\pi_8}{\sqrt{2}} & K^0 \ K^- & \overline{K}^0 & -2rac{\eta_8}{\sqrt{6}} \end{pmatrix} \ oldsymbol{\Phi} = n_f rac{\eta_1}{\sqrt{3}}, \qquad oldsymbol{\Phi} = oldsymbol{\Phi} + rac{1}{n_f} oldsymbol{\Phi}$ Quantum numbers of the meson octet -1 $-\frac{1}{2}$ 0 $\frac{1}{2}$ 1 $1 \xrightarrow{K^{0}} K^{+} \xrightarrow{K^{+}} \pi_{8}$ $0 \xrightarrow{\pi^{-}} \eta_{8} \xrightarrow{\pi^{-}} \eta_{8}$ Energy scale given by meson decay constant $f_0\simeq 63.9\,{
m MeV}$, $\Lambda_{
m \chi PT}=4\pi f_0$ Left-handed Maurer-Cartan field *K*⁻ $\boldsymbol{u}_{\mu} = \mathrm{i} \, \boldsymbol{g} \partial_{\mu} \boldsymbol{g}^{\dagger}$ Mass dimensions $[\boldsymbol{\phi}] = 1$, $[\boldsymbol{g}] = 0$, $[\boldsymbol{u}_{\mu}] = 1$

q

Lagrangian

Flavour symmetry	Covariant derivative		Remember
$oldsymbol{g} ightarrow oldsymbol{V} oldsymbol{g} oldsymbol{\Theta} oldsymbol{V} oldsymbol{g} oldsymbol{\Theta} oldsymbol{f}_0 ightarrow oldsymbol{f} oldsymbol{f}_0 ightarrow oldsymbol{f}_0 oldsymbol{O} oldsymbol{i} oldsymbol{f}_0 oldsymbol{O} oldsymbol{i} oldsymbol{f}_0 ightarrow oldsymbol{f}_0 ightarrow oldsymbol{f}_0 ightarrow oldsymbol{f}_0 ightarrow oldsymbol{f}_0 oldsymbol{O} oldsymbol{i} oldsymbol{f}_0 ightarrow oldsym$	$D^{\mu}\boldsymbol{g}=\partial^{\mu}\boldsymbol{g}-\mathrm{i}(\boldsymbol{L}^{\mu}\boldsymbol{g}-\boldsymbol{g}\boldsymbol{R}^{\mu})$		$oldsymbol{u}_{\mu}={\sf i}oldsymbol{g}\partial_{\mu}oldsymbol{g}^{\dagger}$
Left-handed currents		Chirally invariant	currents
$oldsymbol{U}_{\mu}=oldsymbol{u}_{\mu}-oldsymbol{L}_{\mu}+\widehat{oldsymbol{R}}_{\mu}$, $\widehat{oldsymbol{R}}_{\mu}=oldsymbol{g}oldsymbol{R}_{\mu}oldsymbol{g}^{\dagger}$,	$\widehat{\boldsymbol{M}} = \boldsymbol{g} \boldsymbol{M}$	$\widehat{M}=\langle \widehat{oldsymbol{M}} angle_{f}$, $\ \widehat{oldsymbol{\Theta}}$	$\Theta = { m i}(\Theta - {\pmb \Phi} / f_0)$

Lagrangian

Flavour symmetryCovariant derivativeRemember $\boldsymbol{g} \rightarrow \boldsymbol{V} \boldsymbol{g} \overline{\boldsymbol{V}}, \ \boldsymbol{\Phi}/f_0 \rightarrow \boldsymbol{\Phi}/f_0 - i \langle \ln \boldsymbol{V} \overline{\boldsymbol{V}} \rangle_f$ $D^{\mu} \boldsymbol{g} = \partial^{\mu} \boldsymbol{g} - i (\boldsymbol{L}^{\mu} \boldsymbol{g} - \boldsymbol{g} \boldsymbol{R}^{\mu})$ $\boldsymbol{u}_{\mu} = i \, \boldsymbol{g} \partial_{\mu} \boldsymbol{g}^{\dagger}$ Left-handed currentsChirally invariant currents $\boldsymbol{U}_{\mu} = \boldsymbol{u}_{\mu} - \boldsymbol{L}_{\mu} + \hat{\boldsymbol{R}}_{\mu}, \quad \hat{\boldsymbol{R}}_{\mu} = \boldsymbol{g} \boldsymbol{R}_{\mu} \boldsymbol{g}^{\dagger}, \quad \widehat{\boldsymbol{M}} = \boldsymbol{g} \boldsymbol{M}$ $\widehat{\boldsymbol{M}} = \langle \widehat{\boldsymbol{M}} \rangle_f, \quad \widehat{\boldsymbol{\Theta}} = i (\boldsymbol{\Theta} - \boldsymbol{\Phi}/f_0)$ LO depends on free parameters $f_0, \ b_0, \ and \ m_0$ $\mathcal{L} = \frac{f_0^2}{2} \langle \boldsymbol{U}_{\mu} \boldsymbol{U}^{\mu} \rangle_f + \left(\frac{f_0^2 b_0}{2} \widehat{\boldsymbol{M}} + h.c.\right) + \frac{f_0^2 m_0^2}{2n_f} \widehat{\boldsymbol{\Theta}}^2$

Lagrangian

Covariant derivative Remember Flavour symmetry $oldsymbol{g}
ightarrow oldsymbol{V} oldsymbol{g}$, $\phi/f_0
ightarrow \phi/f_0 - \mathrm{i}\langle \ln oldsymbol{V} \overline{oldsymbol{V}} \rangle_f$ $D^{\mu} oldsymbol{g} = \partial^{\mu} oldsymbol{g} - \mathrm{i}(oldsymbol{L}^{\mu} oldsymbol{g} - oldsymbol{g} oldsymbol{R}^{\mu})$ $oldsymbol{u}_{\mu} = \mathrm{i} oldsymbol{g} \partial_{\mu} oldsymbol{g}^{\dagger}$ Left-handed currents Chirally invariant currents $\widehat{M} = \langle \widehat{\boldsymbol{M}} \rangle_f$, $\widehat{\Theta} = i(\Theta - \Phi/f_0)$ $U_{\mu} = u_{\mu} - L_{\mu} + \widehat{R}_{\mu}$, $\widehat{R}_{\mu} = g R_{\mu} g^{\dagger}$, $\widehat{M} = g M$ LO depends on free parameters f_0 , b_0 , and m_0 $\mathcal{L} = \frac{f_0^2}{2} \langle \boldsymbol{U}_{\boldsymbol{\mu}} \boldsymbol{U}^{\boldsymbol{\mu}} \rangle_f + \left(\frac{f_0^2 b_0}{2} \widehat{M} + \text{h.c.} \right) + \frac{f_0^2 m_0^2}{2n_f} \widehat{\Theta}^2$ NLO depends on free parameters L_i and Λ_i $\mathcal{L} = (2L_2 + L_3) \langle \boldsymbol{U}^{\mu} \boldsymbol{U}_{\mu} \boldsymbol{U}^{\nu} \boldsymbol{U}_{\nu} \rangle_f + L_2 \langle \boldsymbol{U}_{\mu} \boldsymbol{U}_{\nu} \boldsymbol{U}^{\mu} \boldsymbol{U}^{\nu} \rangle_f + \frac{f_0^2}{2n_s} \Lambda_1 U_{\mu} U^{\mu}$ $+ L_5 b_0 \langle \widehat{\boldsymbol{M}} \boldsymbol{U}_{\mu} \boldsymbol{U}^{\mu} \rangle_f + \text{h.c.} + L_8 b_0^2 \Big(\langle \widehat{\boldsymbol{M}}^2 \rangle_f + \text{h.c.} \Big) + \frac{f_0^2 b_0}{2n_\ell} \Lambda_2 \widehat{\boldsymbol{M}} \widehat{\boldsymbol{\Theta}} + \text{h.c.}$ $-\mathrm{i} L_{9} \langle \boldsymbol{U}^{\mu} \boldsymbol{U}^{\nu} (\boldsymbol{L}_{\mu\nu} + \widehat{\boldsymbol{R}}_{\mu\nu}) \rangle_{f} + L_{10} \langle \boldsymbol{L}^{\mu\nu} \widehat{\boldsymbol{R}}_{\mu\nu} \rangle_{f}$

Field strength tensors of the left- and right-handed currents

$$\boldsymbol{L}^{\mu\nu} = \partial^{\mu}\boldsymbol{L}^{\nu} - \partial^{\nu}\boldsymbol{L}^{\mu} - \mathrm{i}[\boldsymbol{L}^{\mu}, \boldsymbol{L}^{\nu}], \quad \boldsymbol{R}^{\mu\nu} = \partial^{\mu}\boldsymbol{R}^{\nu} - \partial^{\nu}\boldsymbol{R}^{\mu} - \mathrm{i}[\boldsymbol{R}^{\mu}, \boldsymbol{R}^{\nu}], \quad \widehat{\boldsymbol{R}}_{\mu\nu} = \boldsymbol{g}\boldsymbol{R}_{\mu\nu}\boldsymbol{g}^{\dagger}$$

Reminder

$$\begin{split} w &= \langle \widetilde{G}_{\mu\nu} G^{\mu\nu} \rangle_c / (4\pi)^2 & \boldsymbol{Q} &= q \overline{q} & \boldsymbol{Q}^{\mu} &= q \sigma^{\mu} q^{\dagger} \\ \widetilde{\boldsymbol{Q}} &= q \sigma_{\mu\nu} G^{\mu\nu} \overline{q} & \overline{\boldsymbol{Q}}^{\mu} &= \overline{q}^{\dagger} \overline{\sigma}^{\mu} \overline{q} & \boldsymbol{Q}_{\mu\nu} &= q \sigma_{\mu\nu} \overline{q} \end{split}$$

LERs associated with the L_{μ} , R_{μ} , M, and Θ currents are well established.

$$\boldsymbol{Q}_{\mu} = -f_0^2 \boldsymbol{U}_{\mu}$$
, $\overline{\boldsymbol{Q}}_{\mu} = -f_0^2 \boldsymbol{g}^{\dagger} \boldsymbol{U}_{\mu} \boldsymbol{g}$, $\boldsymbol{Q} = -\frac{1}{2} f_0^2 b_0 \boldsymbol{g}$, $w = -\mathrm{i} f_0^2 \frac{m_0^2}{n_f} \widehat{\Theta}$

LERs associated with the $T_{\mu
u}$ and arGamma currents

$$oldsymbol{Q}^{\mu
u} = -f_0 \Big(\kappa_T^{D^2} oldsymbol{U}^{\mu} oldsymbol{U}^{
u} + \kappa_T^{LR} (oldsymbol{L}^{\mu
u} + \widehat{oldsymbol{R}}^{\mu
u}) \Big) oldsymbol{g}$$
, $\widetilde{oldsymbol{Q}} = -rac{1}{2} f_0^4 b_0 \kappa_{\Gamma} oldsymbol{g}$

0

Kaon decay

Kaon decays

Master equation

$$\begin{split} \Gamma(K^+ \to \pi^+ s_i) &= 2\pi m_K \left(\frac{\epsilon_{\rm UV}}{2} \frac{b_0}{4\pi m_K}\right)^2 \rho(x_{\pi}, x_s) \\ &\left(\left| {\rm Re} \left(c_{K\pi s_i} - \boldsymbol{c}_{\partial^2 i\, \rm s}^{S_{\rm md}} \frac{m_s^2}{v^2} \right) + \frac{\epsilon_{\rm EW}}{b_0 v} \left(X_i + 2 \frac{c_i^{S_\omega}}{\beta_0} \left(X_0 - h'_b m_K^2 \right) \right) \right|^2 \\ &+ \left| {\rm Im} \, c_{K\pi s_i} + \frac{\epsilon_{\rm EW}}{\epsilon_{\rm UV} f_0 b_0} \left(\theta_{\pi s_i} V_{K\pi\pi} + \theta_{\eta s_i} V_{K\pi\eta} + \theta_{\eta' s_i} V_{K\pi\eta'} \right) \right|^2 \right). \end{split}$$

ALPs

The direct contribution is

$$\mathcal{A}_{\text{direct}} = \mathcal{A}_{m}^{\text{Re}} + \mathcal{A}_{h} = -\frac{b_{0}v}{2f_{a}}c_{K\pi a} - \frac{\epsilon_{\text{EW}}}{2f_{a}}X_{0}, \quad X_{i} = \frac{1}{2}(h_{8i} + (n_{f} - 1)h_{27i})(m_{K}^{2} + m_{\pi}^{2} - m_{s}^{2})$$

while the indirect contribution for production via meson-to-axion mixing is

$$\mathcal{A}_{ ext{mixing}} = \mathcal{A}_m^{ ext{Im}} + \mathcal{A}_{ heta} = -\operatorname{i} rac{\epsilon_{ ext{EW}}}{2f_0} (heta_{\pi a} V_{K\pi\pi} + heta_{\eta a} V_{K\pi\eta} + heta_{\eta' a} V_{K\pi\eta'}),$$

where the mixing angles are now

$$\theta_{\pi a} = \frac{f_0}{f_a} \frac{b_0 v c_{a\pi}}{m_a^2 - m_\pi^2}, \qquad \theta_{\eta a} = \frac{f_0}{f_a} \frac{b_0 v c_{a\eta} + c_{S_\theta} m_0^2 s_{\eta}}{m_a^2 - m_\eta^2}, \qquad \theta_{\eta' a} = \frac{f_0}{f_a} \frac{b_0 v c_{a\eta'} - c_{S_\theta} m_0^2 c_{\eta}}{m_a^2 - m_{\eta'}^2}$$

Comparison with literature for direct contribution

- Previous calculations were wrong by 0.16
- We reproduce the new result

$$\mathcal{A}(\mathcal{K}^- o \pi^- a) pprox 7.5 imes 10^{-8} rac{m_K^2}{f_a}$$

[2102.13112]

Light real scalar fields

Lagrangian

$$\mathcal{L}_s = \mathcal{L}_s^{\mathsf{hidden}} + \mathcal{L}_s^{\mathsf{portal}}$$
, $\mathcal{L}_s^{\mathsf{hidden}} = rac{1}{2} \partial_\mu s \partial^\mu s + \lambda s^2 + \lambda' s^3 + \lambda'' s^4$,

Portal interactions with coefficients α_i , c_X , and c_X

$$\mathcal{L}_{s}^{\text{portal}} = \frac{\alpha_{0}}{\Lambda} s D^{\mu} H^{\dagger} D_{\mu} H + \left(\alpha_{1} s + \alpha_{2} s^{2} + \frac{\alpha_{3}}{\Lambda} s^{3} \right) H^{\dagger} H + \frac{\alpha_{4}}{\Lambda} s \left(H^{\dagger} H \right)^{2}$$

$$+ \frac{s}{\Lambda} \left(i \, \boldsymbol{c}_{u} q \overline{u} \widetilde{H}^{\dagger} + \boldsymbol{c}_{d} q \overline{d} H^{\dagger} + \boldsymbol{c}_{e} \ell \overline{e} H^{\dagger} + \text{h.c.} \right) + \frac{c_{W}}{\Lambda} s W_{\mu\nu} W^{\mu\nu} + \frac{c_{B}}{\Lambda} s B_{\mu\nu} B^{\mu\nu} + \frac{c_{G}}{\Lambda} s G_{\mu\nu} G^{\mu\nu} ,$$

Amplitude reproduces result from Nucl. Phys. B 343 (1990)

$$\begin{split} \mathcal{A}(K^+ \to \pi^+ h) &= \frac{m_K^2}{v} \bigg[\bigg(\frac{\kappa_W}{2} - \frac{\kappa_G}{\beta_0} \bigg) \epsilon_{\mathsf{EW}} (h_8 + (n_f - 1)h_{27}) \bigg(1 + \frac{m_\pi^2 - m_s^2}{m_K^2} \bigg) \\ &+ \frac{\kappa_{\mathsf{d}} - \kappa_{\mathsf{u}}}{4} \epsilon_{\mathsf{EW}} (h_8 + (n_f - 1)h_{27}) \frac{m_\pi^2}{m_K^2} - 2\epsilon_{\mathsf{EW}} \bigg(\frac{\kappa_W}{2} h_b - \frac{\kappa_G}{\beta_0} h_b' \bigg) + \kappa_{\mathsf{ds}} \bigg] \,. \end{split}$$

Future

- Decay from heavy mesons work in progress
- Constrain currents instead of couplings
- EFT description of portal solution for meson anomalies

- New Physics might be found in hidden sectors
- EFTs are designed to describe heavy New Physics
- Portal EFTs capture new physics interactions involving light mediators
- We have reproduced kaon decays into hidden sectors within χPT
- Other EFTs need to be extended in order to describe the decays of other mesons