

Status and overview of neutrino (astro)physics with neutrino telescopes

Luigi Antonio Fusco – Università di Salerno

8th Workshop on Theory, Phenomenology and Experiments in Flavour Physics Neutrinos, Flavor Physics and Beyond

Anacapri, 11-13th June 2022

Neutrino telescopes in a nutshell

Deep sea water

A Gton neutrino telescope

10+ years of data taking at the South Pole

First discovery instrument for HE neutrino astronomy

0.01 Gton neutrino telescope

15 years of data taking in the Mediterranean Sea (France)

Switched off Feb 2022

In de-commisioning stage

4

KM3NeT/ARCA 90m 36m The Detection Unit (DU) holds 18 DOMs 2 Building blocks, 115 DU each \rightarrow ~Gton instrumented volume The optical sensor: **Digital Optical Module** (DOM). Each DOM comprises 31 3" PMTs

Charlenge Third state

Construction and first data

7 Mton volume

Construction and first data

Uniform KM3NeT detector design

Designed to assess **Neutrino Mass Ordering** with atmospheric neutrinos

See e.g. POS(ICRC2019)857 POS(ICRC2019)934

7

9 m

KM3NeT/ORCA

~ 225 m

Depth=2450 m

• 6 DUs since Feb 2020

- Nov 2021: 10 DUs
- Currently operating 7
- Add 4 DUs in Summer

Construction and first data

Uniform KM3NeT detector design

Designed to assess **Neutrino Mass Ordering** with atmospheric neutrinos

See e.g. POS(ICRC2019)857 POS(ICRC2019)934

Event topologies in a neutrino telescope

All NC interactions v_e CC interactions

Good energy resolution Limited precision for the direction reconstruction

v_τ CC interactions with
hadronic / electronic
tau decay

Good energy resolution Angular resolution gets better with larger lengths

 v_{μ} CC interactions Atmospheric μ v_{τ} CC interactions with muonic tau decay

Good angular resolution Limited precision for the energy reconstruction

Targets for neutrino telescopes

Target GeV to PeV energies with the same instruments

Allow the study of all-flavour neutrino fluxes

The discovery of HE cosmic neutrinos

Diffuse flux from astrophysical objects observed by IceCube in all-flavour analyses

The discovery of HE cosmic neutrinos

Diffuse flux from astrophysical objects observed by IceCube in all-flavour analyses

Some tension between different channels: "HESE" and "Cascades" are electron neutrino dominated, muon neutrinos show a different behaviour Astrophysics or Neutrino Physics? 12

HE tau neutrinos in IceCube

No atmospheric background → tau flux can only be of cosmic origin

2 candidate events in 10 years of IceCube data

Tau observation → constrain flavour ratio @Earth and thus @source

Propagation effects? Beyond Standard Model?

https://arxiv.org/abs/2011.03561

HE tau neutrinos in IceCube

Fraction of $\nu_{\rm e}$

	HESE with ternary topology ID	$\nu_e: \nu_\mu: \nu_\tau$ at source \rightarrow on Earth:
\star	Best fit: 0.20 : 0.39 : 0.42	$ 0:1:0 \to 0.17: 0.45: 0.37 $
	Global Fit (IceCube, APJ 2015)	• $1:2:0 \rightarrow 0.30: 0.36: 0.34$
	Inelasticity (IceCube, PRD 2019)	▲ $1:0:0 \rightarrow 0.55: 0.17: 0.28$
	$3\nu\text{-mixing}\ 3\sigma$ allowed region	◆ $1:1:0 \rightarrow 0.36: 0.31: 0.33$

No atmospheric background → tau flux can only be of cosmic origin

2 candidate events in 10 years of IceCube data

Tau observation → constrain flavour ratio @Earth and thus @source

Propagation effects? Beyond Standard Model?

https://arxiv.org/abs/2011.03561

The discovery of HE cosmic neutrinos

270 TeV muon On 22 September 2017 at 20:54:30.43 UTC

RA 77.4° and Dec +5.7°

Close to the Flaring Blazar **TXS 0506+056**

Fermi-LAT and MAGIC prompt follow-up in gamma rays >**3**σ **significance**

Not really compatible with other close-by emitters

Science **361, 6398**, eaat1378 DOI: 10.1126/science.aat1378

125m

ARCA can confirm the IceCube diffuse flux within 1 year of data taking with the full planned detector

With a much better angular resolution for both tracks and cascades

Track Reconstruction

KM3Ne1

Cascade Reconstruction

Improvement in searches for point-like sources mainly in the Southern Celestial Hemisphere

B. Caiffi et al. ICRC 2021

KM3Ne¹

Neutrino physics with the atmospheric beam

Neutrino physics with the atmospheric beam

Phys. Rev. Lett. 120, 071801 (2018)

Muon neutrino disappearance from the atmospheric beam

- tau appearance is difficult to see

– neutral current contribution affect the "cascade" sample

Neutrino physics with the atmospheric beam

Neutrino oscillations in KM3NeT/ORCA

KM3NeT

Neutrino oscillations in KM3NeT/ORCA

Neutrino2022

Coming soon

- More data 355 -> 540 days
- Better selection & particle identification
- Sample increased by a factor 5
- Unblinding to come in the next months

And then ...

3 years of full ORCA operations will give unprecedented sensitivity to oscillation parameters

KM3NeT

Tau appearance in KM3NeT/ORCA

The full KM3NeT/ORCA detector should measure few thousands of tau neutrinos from oscillation

KM3NeT

\rightarrow strong constraints on unitarity

PoS ICRC2019, 1019 (2019)

Neutrino mass ordering with atmospheric neutrinos

Matter effects for neutrinos through the Earth → NMO accessible

Measurable effects at ~10 GeV in 10 Mton water Cherenkov detector

Huge detector \rightarrow large statistics

Neutrino mass ordering with atmospheric neutrinos

Matter effects for neutrinos through the Earth → NMO accessible

Measurable effects at ~10 GeV in 10 Mton water Cherenkov detector

Huge detector \rightarrow large statistics

NMO in KM3NeT/ORCA

NMO determination at 3 sigma level within 3 years of detector completion

Beyond Standard Model searches with neutrino telescopes

- Indirect Dark Matter searches
- Non-standard interactions in neutrino oscillations*
- Sterile neutrinos*
- ...*

Dark matter searches with neutrino telescopes

Dark matter searches with neutrino telescopes

Conclusions

- Neutrino telescopes are showing how lively the field is
- IceCube has already produced discoveries
 - Diffuse neutrino flux
 - First neutrino candidate sources
 - Phenomenology of atmospheric neutrinos
- KM3NeT on the rise, with first physics results on their way
 - Quickly confirm IceCube discoveries thanks to its improved sensitivity
 - Complete the observation of the sky fully opening the Southern Hemisphere to neutrino astronomy
 - Full neutrino oscillation physics program ← already started!

Backup

The KM3NeT Deployment

2020 JINST 15 P11027

The KM3NeT Digital Optical Module

https://doi.org/10.48550/arXiv.2203.10048

KM3NeT

Mediterranean waters

36

01-Jan-10 01-Feb-10 01-Mar-10 01-Apr-10 01-May-10 01-Jun-10 01-Jul-10

Mediterranean waters

Year

Antarctic ice

Ice shells formed over 100k yrs from snowfall

→ ice collects impurities + air bubbles

These represent scattering centres for light in the ice

→ scattering length changes with depths

– needs to be taken into account when reconstructing Cherenkov light

The atmospheric neutrino "beam"

Muon and electron neutrino energy spectra in the atmosphere can be measured

– energy estimation

– detector systematics

+ physics of cosmic rays in the atmosphere (composition, interactions)

The IceCube High Energy Starting Events

Vetoing downward-going passing-through events → rejection of accompanied atmospheric neutrinos High Energy Starting Events

Opens the sky to downward-going neutrino events → **highest energies**

Dependent on the proper modelisation of:

– CR muon flux at the detector – CR muons in the detector

The IceCube High Energy Starting Events

High-energy starting events above 60 TeV

- Southern sky accessible (veto)
- Northern sky more opaque (absorption)

Not really compatible with any reasonable atmospheric ⁴¹ assumption; however a **null-prompt** is fitted

The highest-energy cascade event

Partially contained events → allow for higher energies → need more sophisticated analysis to reject backgrounds

6 PeV cascade: candidate found in data → candidate Glashow-resonance event

Direct identification of an anti-electron neutrino ← flavour studies

+ study of the W production at resonance

TXS 0506+056

DOI: 10.1126/science.aat2890

γ and v: CR propagation in the Milky Way

Neutrinos carry direct information on CR propagation. e.g.:

- Non-homogeneous diffusion can enhance γ and ν emission

- Molecular clouds/dense environments boost γ and ν fluxes

FERMI-LAT map

* ApJ. **750:** 3, 2012 ** ApJ Lett. **815**: L25, 2015

ν models from GCR and γ

Plots by C.Haack, for the IceCube Collaboration

νs from the GP

Low latitude Galactic contribution constrained to 8% of the all-sky flux

ApJ Lett **868**: L20 (2018)

are different in the model

New IC cascade analysis: ApJ **886**: 1, 2019 (see backup)

Why a km³ detector in the Northern Hemisphere

- Water is optimal for light
 - Limited scattering → direct photons
 - Homogeneous medium \rightarrow easy to simulate, less systematic effects
 - \rightarrow 0.1 degree angular reconstruction accuracy

Why a km³ detector in the Northern Hemisphere

0% 50% 100%

Soft spectra from γ obs. \rightarrow lowE threshold analysis

Sterile neutrino searches

4th sterile neutrino added into oscillations → atmospheric oscillograms are modified

 $\bigcup_{1}^{\mathbf{b}} \sin^2 \theta_{34} \cos^2 \theta_{24}$ sin²θ₃₄cos²θ₂₄ 99% C.L. 90% C.L. KM3NeT/ORCA, NO M3NeT/ORCA, NO M3NeT/ORCA, IO KM3NeT/ORCA, IO ANTARES (2019), NO ANTARES (2019), NO IC (2017), IO, $\delta_{24} = 0^{\circ}$ IC (2017), IO, δ₂₄ = 0° ••••• SK (2015), NO, δ₂₄ = 0° ···· SK (2015), NO, δ₂₄ = 0° **10**⁻¹ 10⁻² 10⁻² 10⁻² 10⁻³ **10**⁻¹ 10⁻³ 10⁻² 10⁻¹ $sin^2\theta_{24}$ $sin^2 \theta_{24}$

J. High Energ. Phys. 2021, 180 (2021).

 $\Delta m_{41}^2 = 1 \,\mathrm{eV}^2$

Non-standard interactions

Non-standard interactions

Quantum Decoherence

$$\frac{d}{dt}\rho = -i[H,\rho] - \sum_{m} [\{\rho, D_{m}D_{m}^{\dagger}\} - D_{m}\rho D_{m}^{\dagger}].$$

The solution is given by

$$\rho_{ij} \sim \mathbf{e}^{-i\Delta E_{ij}t-\gamma_{ij}}$$

The decoherence parameter γ determines the strength of the damping. Three limiting cases can be considered, where one of the parameters is zero, and the other two are equal:

- Atmospheric limit: $\gamma_{21} = 0 \iff (\gamma_{32} = \gamma_{31})$
- Solar limit 1:
- $\gamma_{32} = 0 \iff (\gamma_{21} = \gamma_{31})$
- Solar limit 2:

N. Lessing Neutrino2022

Quantum Decoherence

N. Lessing Neutrino2022