Heavy Neutral Leptons at Colliders: LFV, LNV and Heavy Neutrino-Antineutrino Oscillations

Stefan Antusch

University of Basel, Department of Physics

Workshop FP Capri - "Neutrinos, Flavour and Beyond", Capri Island, Italy

June 13, 2022

Heavy Neutral Leptons – the right SM extension to explain the light neutrino masses?

There are no rightchiral neutrino states (v_{Ri}) in the Standard Model

→ v_{Ri} would be completely neutral under all SM symmetries (HNLs
 ↔ RH neutrinos
 ↔ sterile neutrinos)

Adding v_{Ri} leads to the following extra terms in the Lagrangian density:

$$\mathscr{L} = \mathscr{L}_{\mathrm{SM}} - \frac{1}{2} \overline{\nu_{\mathrm{R}}^{I}} M_{IJ}^{N} \nu_{\mathrm{R}}^{cJ} - (Y_{N})_{I\alpha} \overline{\nu_{\mathrm{R}}^{I}} \widetilde{\phi}^{\dagger} L^{\alpha} + \mathrm{H.c.}$$

M^N: sterile ν mass matrix

 Y_N : neutrino Yukawa matrix (\rightarrow Dirac mass terms)

High Scale vs. Low Scale Seesaw

Smallness of light neutrino masses may be a consequence of:

→ Large RH neutrino masses → Approximate
 "Lepton-number" like symmetry

"High Scale Seesaw"

"Low Scale Seesaw" ... can well operate at EW/TeV energies accessible to colliders, with potentially "unsuppressed" Yukawa couplings → testable at colliders!

Low Scale Seesaw with "Symmetry protection"

Example for protective "lepton number"-like symmetry (case of 2HNLs):

→ Note: "Symmetry protection" requires pairs

of sterile (right-handed) neutrinos ... which

form "pseudo-Dirac pairs"!

 $M_{\nu}^{\text{general}} = \begin{pmatrix} 0 & m_D & m'_D \\ (m_D)^T & M' & M \\ (m'_D)^T & M & M'' \end{pmatrix}$

For comparison: most general

seesaw with 2 HNLs:

"get larger'

Vith 2 HNLs (min # to explain m_{ν}) and exact symmetry

$$\mathscr{L}_N = - \overline{N_R}^1 M N_R^{c^2} - y_\alpha \overline{N_R}^1 \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.}$$

In the symmetry limit

with basis

$$\Psi = \left(
u_L, (N_R^1)^c, (N_R^2)^c
ight)$$

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ (m_D)^T & 0 & M \\ 0 & M & 0 \end{pmatrix}$$

from symmetry to approximate symmetry

$$M_{\nu}^{\text{general}} = \begin{pmatrix} 0 & m_D & \varepsilon \\ (m_D)^T & \varepsilon' & M \\ \varepsilon^T & M & \varepsilon'' \end{pmatrix}$$

breaking it):

From general 2 HNL

seesaw to "symmetry limit"

Approximate

symmetry (with "small" *ɛ*-terms

Low Scale Seesaw with "Symmetry protection"

→ Light neutrino masses induced from small breaking of the "L-like" symmetry $(m_{\nu} \sim \varepsilon)$

$$\mathscr{L}_{N} = - \overline{N_{R}}^{1} M N_{R}^{c^{2}} - y_{\alpha} \overline{N_{R}}^{1} \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.}$$

+ symmetry breaking terms $O(\varepsilon)$

Estimate for induced HNL mass splitting ΔM in "inverse" seesaw: $\Delta M^{\text{inv}} = \frac{m_{\nu_i}}{|\theta^2|}$ "Linear" seesaw: $M_{\nu} = \begin{pmatrix} 0 & m_D & \varepsilon \\ (m_D)^T & 0 & M \\ \varepsilon^T & M & 0 \end{pmatrix}$ $\rightarrow \underbrace{m_{\nu}} \frac{\epsilon^T m_D}{M}$

In "minimal linear seesaw" (2 HNLs): $\Delta M_{\rm NH}^{\rm lin} = m_{\nu_3} - m_{\nu_2} \stackrel{m_{\nu_1}=0}{=} 0.042 \text{ eV}$ $\Delta M_{\rm IH}^{\rm lin} = m_{\nu_2} - m_{\nu_1} \stackrel{m_{\nu_3}=0}{=} 0.00075 \text{ eV}$

also: ... no tree-level m_v

$$M_{
u} = egin{pmatrix} 0 & m_D & 0\ (m_D)^T & arepsilon & M\ 0 & M & 0 \end{pmatrix}$$

*) Note: names "inverse" and "linear" seesaw used here to indicate the position of the ε -term in M_{ν}

cf. S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

For low scale seesaw models, see e.g.: D. Wyler, L. Wolfenstein ('83), R. N. Mohapatra, J. W. F. Valle ('86), M. Shaposhnikov (,07), J. Kersten, A. Y. Smirnov ('07), M. B. Gavela, T. Hambye, D. Hernandez, P. Hernandez ('09), M. Malinsky, J. C. Romao, J. W. F. Valle ('05), S.A., Hohl, King, Susic (in SO(10) with low scale Z', arXiv:1712.05366) ...

Benchmark scenario: The SPSS (= Symmetry Protected Seesaw Scenario)

... captures the phenomenology of a dominant "pseudo-Dirac"-like HNL pair at colliders ... without the constraints of a restricted pure 2HNL model (\leftrightarrow correlations between y_a)

$$Y_{\mathcal{V}} = \begin{pmatrix} y_{\mathcal{V}_{\mathcal{R}}} & 0 \\ y_{\mathcal{V}_{\mathcal{R}}} & 0 \\ y_{\mathcal{V}_{\mathcal{R}}} & 0 \end{pmatrix}, M = \begin{pmatrix} 0 & M_{\mathcal{R}} & 0 \\ M_{\mathcal{R}} & 0 \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

+ O(ε) perturbations to generate the light neutrino masss (which we can often neglect for collider studies)

For details on the SPSS, see: S.A., O. Fischer (arXiv:1502.05915) Additional sterile neutrinos can exist, but assumed to have no effects at colliders (which can be realised easily, e.g. by giving lepton number = 0 to them).

The SPSS in the "symmetry limit"

We consider the SPSS (Symmetry Protected Seesaw Scenario)

In the symmetry limit:

$$\begin{aligned} \mathscr{L}_{N} &= - \quad \overline{N_{R}}^{1} M \quad N_{R}^{c^{2}} - y_{\alpha} \overline{N_{R}}^{1} \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.} \\ + \quad \dots \text{ (terms from additional sterile vs)} \end{aligned}$$

We consider the SPSS (Symmetry Protected Seesaw Scenario)

In the symmetry limit:

$$\mathscr{L}_{N} = - \overline{N_{R}}^{1} M N_{R}^{c}^{2} - y_{\alpha} \overline{N_{R}}^{1} \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.}$$

+ ... (terms from additional sterile vs)

4 Parameters: Μ, y_α, (α=e,μ,τ)

We consider the SPSS (Symmetry Protected Seesaw Scenario)

In the symmetry limit:

y
$$\mathscr{L}_{N} = - \overline{N_{R}}^{1} M N_{R}^{c^{2}} - y_{\alpha} \overline{N_{R}}^{1} \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.}$$

+ ... (terms from additional sterile vs)

After EW symmetry breaking, we diagonalize the 5x5 mass matrix:

Mass eigenstates:
$$\tilde{n}_j = (\nu_1, \nu_2, \nu_3, N_4, N_5)_j^T = U_{j\alpha}^{\dagger} n_{\alpha}$$
"light" and
neutrinoswith: $n = (\nu_{e_L}, \nu_{\mu_L}, \nu_{\tau_L}, (N_R^1)^c, (N_R^2)^c)^T$ "active" and
neutrinos

"light" and "heavy" neutrinos

"active" and "sterile" neutrinos

This defines the 5x5 mixing matrix U.

We consider the SPSS: Instead of the y_{α} , we use the active sterile mixing angles θ_{α} , (α =e, μ , τ)

In the symmetry \mathscr{L}_{N} = limit:

$$\mathscr{L}_{N} = - \overline{N_{R}}^{1} M N_{R}^{c^{2}} - y_{\alpha} \overline{N_{R}}^{1} \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.}$$

+ ... (terms from additional sterile vs)

The leptonic mixing matrix to leading order in the active-sterile mixing parameters:

$$U_{\text{5x5}} = \begin{pmatrix} \mathcal{N}_{1e} & \mathcal{N}_{1\mu} & \mathcal{N}_{1\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{e} & \frac{1}{\sqrt{2}}\theta_{e} \\ \mathcal{N}_{2e} & \mathcal{N}_{2\mu} & \mathcal{N}_{2\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{\mu} & \frac{1}{\sqrt{2}}\theta_{\mu} \\ \mathcal{N}_{3e} & \mathcal{N}_{3\mu} & \mathcal{N}_{3\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{\tau} & \frac{1}{\sqrt{2}}\theta_{\tau} \\ 0 & 0 & 0 & \frac{\mathrm{i}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\theta_{\tau} \\ -\theta_{e}^{*} & -\theta_{\mu}^{*} & -\theta_{\tau}^{*} & \frac{-\mathrm{i}}{\sqrt{2}}(1-\frac{1}{2}\theta^{2}) & \frac{1}{\sqrt{2}}(1-\frac{1}{2}\theta^{2}) \end{pmatrix}$$

Parameters: M, y_α, (α=e,μ,τ) or equivalently M, θ_α, (α=e,μ,τ)

Active-sterile neutrino mixing parameters: $\theta_{\alpha} = \frac{y_{\alpha}^{*}}{\sqrt{2}} \frac{v_{\rm EW}}{M}, \qquad \alpha = e, \mu, \tau$

Sterile neutrinos mix with the active ones → the heavy neutrinos (= mass eigenstates) participate in weak interactions!

$$U = \begin{pmatrix} \mathcal{N}_{1e} & \mathcal{N}_{1\mu} & \mathcal{N}_{1\tau} \\ \mathcal{N}_{2e} & \mathcal{N}_{2\mu} & \mathcal{N}_{2\tau} \\ \mathcal{N}_{3e} & \mathcal{N}_{3\mu} & \mathcal{N}_{3\tau} \\ 0 & 0 & 0 \\ -\theta_e^* & -\theta_\mu^* & -\theta_\tau^* & \frac{-i}{\sqrt{2}}(1-\frac{1}{2}\theta^2) & \frac{1}{\sqrt{2}}(1-\frac{1}{2}\theta^2) \end{pmatrix}$$

⇒ heavy neutrinos can get produced also in weak interaction processes!

Heavy neutrino interactions

When W bosons are involved, there is a possible sensitivity to the flavour-dependent θ_{α}

V $heta_e, heta_\mu, heta_ au$ Z

... vertices for production and for decay ...

University of Basel

Stefan Antusch

Lifetime and decay length of heavy neutrinos: For M < m_w, they can be long-lived!

Note: Decay length in the laboratory frame is:

 $c\tau\sqrt{\gamma^2-1}$

cf. S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

Stefan Antusch

What are the sensitivities for probing HNLs at future collider experiments?

Note: I will consider the SPSS as a benchmark scenario and restrict myself to M > 10 GeV

Ambitious plans for future colliders different collider types: e⁺e⁻, pp, ep

Stefan Antusch

Systematic assessment of signatures of sterile neutrinos at colliders

S.A., E. Cazzato, O. Fischer (arXiv:1612.02728), See also many other works by many authors ...

Different collider types feature different production channels ...

... helps a lot to suppress SM background!

*) unambiguous (i.e. clear form final state), no SM background at parton level (but of course background with e.g. extra neutrinos)

Summary: Estimated sensitivities at future ee, pp and ep colliders

Summary: Estimated sensitivities at future ee, pp and ep colliders

Sensitivity of lepton-trijet searches at ep colliders update!

LFV lepton-trijet signature at LHeC and FCC-eh: Sensitivity from analysis at the reconstructed level

"lepton-trijet" signature at ep colliders (LHeC, FCC-eh) I_{α} iii with e.g. $\alpha = \tau$ or μ

In addition, as we found out recently: LFV at ep colliders can also probe HNLs with much larger masses!

Novel signature: cLFV from effective e- μ and e- τ conversion operators at LHeC/FCC-eh

cLFV searches via e- μ and e- τ conversion at ep colliders

S.A., A. Hammad, A. Rashed (arXiv:2010.08907)

Effective description:

Stefan Antusch

University of Basel

2.5

cLFV searches via e-μ and e-τ conversion at ep colliders

S.A., A. Hammad, A. Rashed (arXiv:2010.08907)

Effective description:

cLFV searches via e-μ and e-τ conversion at ep colliders

S.A., A. Hammad, A. Rashed (arXiv:2010.08907)

cLFV searches via e-μ and e-τ conversion at ep colliders

Stefan Antusch

Sensitivity at LHeC for HNLs with masses far above M_W via e- μ and e- τ conversion

LHeC with 3 ab⁻¹

To my knowledge, this search channel could yield the best sensitivity to $e-\tau$ cLFV (among the currenlty envisioned experiments)!

> S.A., A. Hammad, A. Rashed (arXiv:2010.08907)

Stefan Antusch

Beyond the "L-like"-symmetry limit: Can we observe LNV from the HNLs (required to generate light m_{ν})?

Signatures for lepton num from sterile neutri

Lepton-number violating (LNV) signatures possible (with no SM background at parton level) <u>but expected to be strongly</u> <u>suppressed</u> by the (approximate) protective "lepton number"-like symmetry!

See e.g. discussion in Kersten, Smirnov (2007) \rightarrow LNV from neutrino mass generation not observable at LHC

Stefan Antusch

Signatures for lepton num from sterile neutri

Statement not entirely valid when one takes into account the possibility of Heavy Neutrino-Antineutrino Oscillations!

Stefan Antusch

Heavy Neutrino-Antineutrino Oscillations

Interaction states: Produced from W decay - "Heavy Neutrinos N" (together wilth l_{α}^+) - "Heavy Antineutrinos \overline{N} " (together wilth l_{α}^-)

They are superpositions of the mass eigenstates:

$$\overline{N} = 1/\sqrt{2}(iN_4 + N_5)$$
 $N = 1/\sqrt{2}(-iN_4 + N_5)$

Stefan Antusch

Heavy Neutrino-Antineutrino Oscillations

Interaction states: Produced from W decay - "Heavy Neutrinos N" (together wilth l_{α}^{+}) - "Heavy Antineutrinos \overline{N} " (together wilth l_{α}^{-})

They are superpositions of the mass eigenstates: $\overline{N} = 1/\sqrt{2}(iN_4 + N_5)$ $N = 1/\sqrt{2}(-iN_4 + N_5)$ Due to the $O(\varepsilon)$ perturbations to generate the light neutrino masses: \rightarrow mass splitting ΔM between the heavy mass eigenstates N₄ and N₅ \rightarrow propagation of interfering mass eigenstates induces oscillations between \overline{N} and N

Stefan Antusch

Heavy Neutrino-Antineutrino Oscillations

Due to the $O(\varepsilon)$ perturbations to generate the light neutrino masses: \rightarrow mass splitting ΔM between the heavy mass eigenstates N₄ and N₅ \rightarrow propagating mass eigenstates induce oscillations between N and N Since an N decays into a l_{α}^{-} and a \overline{N} into a l_{α}^{+} , the Heavy Neutrino-Antineutrino Oscillations lead to an oscillation between LNC and LNV final states, as a function of the oscillation time (or travelled distance)

We recently studied the Heavy Neutrino-Antineutrino Oscillations in QFT ...

Study in QFT (using the formlism of external wave packets [cf. Beuthe 2001])

$$\mathcal{A} = \langle f | \hat{T} \left(\exp \left(-i \int \mathrm{d}^4 x \ \mathcal{H}_I \right) \right) - \mathbf{1} | i
angle$$

→ Full oscillation formulae

where

(a) Feynman diagram for the LNC process

(b) Feynman diagram for the LNV process

Oscillation formulae in the SPSS (with ε -perturbations, in an expansion):

$$P_{\alpha\beta}^{LNV}(L) = \frac{1}{2\sum_{\beta} |\theta_{\alpha}|^{2} |\theta_{\beta}|^{2}} \left(|\theta_{\alpha}|^{2} |\theta_{\beta}|^{2} (1 - \cos(\phi_{45}L)) \right) \quad \leftarrow \text{LO}$$

Oscillation
probability $-2(I_{\beta} |\theta_{\alpha}|^{2} + I_{\alpha} |\theta_{\beta}|^{2}) \sin(\phi_{45}L) \right), \quad \leftarrow \text{NLO}$

$$P_{\alpha\beta}^{LNC}(L) = \frac{1}{2\sum_{\beta} |\theta_{\alpha}|^{2} |\theta_{\beta}|^{2}} \left(|\theta_{\alpha}|^{2} |\theta_{\beta}|^{2} (1 + \cos(\phi_{45}L)) \right) \quad \leftarrow \text{LO}$$

Survival
probability $-2(I_{\beta} |\theta_{\alpha}|^{2} - I_{\alpha} |\theta_{\beta}|^{2}) \sin(\phi_{45}L) \right). \quad \leftarrow \text{NLO}$

$$egin{aligned} I_eta := \mathrm{Im}(heta_eta^st heta_eta^\prime \exp(-2i\Phi))\,, \ \phi_{ij} := -rac{2\pi}{L_{ij}^{osc}} = -rac{m_i^2 - m_j^2}{2|\mathbf{p}_0|}\,, \ \Phi := rac{1}{2}\mathrm{Arg}\left(ec{ heta^\prime}\cdotec{ heta^st}
ight)\,. \end{aligned}$$

S.A., J. Rosskopp (arXiv:2012.05763)

University of Basel

Stefan Antusch

We recently studied the Heavy Neutrino-Antineutrino Oscillations in QFT ...

$$P_{\alpha\beta}^{LNV}(L) = \frac{1}{2\sum_{\beta} |\theta_{\alpha}|^2 |\theta_{\beta}|^2} \left(|\theta_{\alpha}|^2 |\theta_{\beta}|^2 (1 - \cos(\phi_{45}L)) - 2(I_{\beta}|\theta_{\alpha}|^2 + I_{\alpha}|\theta_{\beta}|^2) \sin(\phi_{45}L) \right),$$

$$\begin{split} P_{\alpha\beta}^{LNC}(L) &= \frac{1}{2\sum_{\beta} |\theta_{\alpha}|^2 |\theta_{\beta}|^2} \bigg(|\theta_{\alpha}|^2 |\theta_{\beta}|^2 (1 + \cos(\phi_{45}L)) \\ &- 2(I_{\beta}|\theta_{\alpha}|^2 - I_{\alpha}|\theta_{\beta}|^2) \sin(\phi_{45}L) \bigg) \;. \end{split}$$

NLO effects are "flavour oscillations" ... oscillations remain when summing LNC+LNV ... they go to 0 when additionally summing over all ouitgoing flavours

$$P_{\alpha\beta}^{LNC}(L) + P_{\alpha\beta}^{LNV}(L) = \frac{1}{\sum_{\beta} |\theta_{\alpha}|^2 |\theta_{\beta}|^2} \left(|\theta_{\alpha}|^2 |\theta_{\beta}|^2 - 2I_{\beta} |\theta_{\alpha}|^2 \sin(\phi_{45}L) \right)$$

S.A., J. Rosskopp (arXiv:2012.05763)

University of Basel

Stefan Antusch

We recently studied the Heavy Neutrino-Antineutrino Oscillations in QFT ...

Furthermore:

We confirmed the LO formulae used in previous works. See e.g.: G. Anamiati, M. Hirsch and E. Nardi (2016), G. Cvetic, C. S. Kim, R. Kogerler and J. Zamora-Saa (2015), ... (see also Refs in arXiv:2012.05763 for other works)

We showed that in the SPSS + ε-terms: only ΔM (as additional parameter) relevant for describing the oscillations at LO
 → Proposal of the SPSSΔM (i.e. the SPSS plus only ΔM as additional parameter) as suitable benchmark scenario

 ➤ We carefully discussed how the "observability conditions" can be checked (such as e.g. if coherence is maintained, etc.)
 → satisfied for the considered parameter region

We discussed the NLO effects (i.e. the flavour oscillations) and showed that for the considered benchmark point they are tiny.

S.A., J. Rosskopp (arXiv:2012.05763)

Signal: Oscillating fraction of LNV / LNC decays with lifetime (→ displacement)

Example: Linear seesaw (inverse mass ordering)

(using the prediction for ΔM in the minimal linear seesaw model for inverse neutrino mass ordering)

For this plot: fixed γ factor (instead of distribution), no uncertainties yet.

S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

Estimate: Simulated signal including uncertainties in proper time frame ...

Example: Linear seesaw (inverse mass ordering)

Full analysis at the reconstructed level in preparation ... plus Madgraph "patch" for simulating the oscillations, SPSS∆M model file (with Johannes Rosskopp and Jan Hajer)

Distribution of γ factors included \rightarrow one has to reconstruct signal as function of lifetime (not displacement)

S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

... a little remark on the LNV, and the recent discussion about testing "Dirac HNL" vs. "Majorana HNL"

... given the various potentially observable phenomena, including LNV

 \rightarrow SPSSAM (i.e. the SPSS with AM as additional free parameter) appears to be a useful benchmark scenario (can capture all of the effects discussed in my talk \odot)*

 \rightarrow ... effects cannot be described by

- 1 Majorana HNL (LNV/LNC ratio always 50%- no oscillations, for observable effects too large m_{vi} , need at least 2 to describe $m_v \otimes$) - 1 Dirac HNL (no LNV – no oscillations, no contribution to $m_v \otimes$)

*) or alternatively of course a full 2+n HNL model

Summary

- With protective "lepton number"-like symmetry, the small observed m_v can be explained with "large y_v" and ~ EW/TeV scale M_R. Low scale Seesaw: HNLs testable at present and future colliders
- \rightarrow Benchmark scenario: SPSS (or SPSS Δ M)
- LFV (but LNC) signatures can be very sensitive, especially at future ep colliders.
- LNV, although (apparently) suppressed by the "lepton number"-like symmetry, can be observable at colliders. It can be understood as emerging from Heavy Neutrino-Antineutrino Oscillations
- > Opens up possibilities for testing neutrino mass generation at colliders ...
- > In summary: Fascinating prospects for probing HNLs at future colliders!

Thanks for your attention!

Extra Slides 1: Present constraints

Strongest bounds for *M* < *M_W* currently by CMS

CMS Collaboration arXiv: 2201.05578

University of Basel

Stefan Antusch

In addition: Constraints from precision experiments (EWPO, cLFV, ...) – also apply to higher M

Constraints from global fit (M > 10 GeV): S.A., O. Fischer (arXiv:1502.05915) For a similar study, see also: E. Fernandez-Martinez, J.Hernandez-Garcia, J. Lopez-Pavon (arXiv:1605.08774) Constraints for smaller M, see e.g.: M. Drewes, B. Garbrecht (arXiv:1502.00477)

Extra Slides 2: SPSS parameters for which LNV is induced

For which parameters is LNV induced? Even if not resolvable → "integrated effect"

Plot from S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

Integrated effect, see also: G. Anamiati, M. Hirsch and E. Nardi (hep-ph/1607.05641), M. Drewes, J. Klaric, P. Klose (hep-ph/1907.13034)