Flavor structure of quark and lepton in modular symmetry

Morimitsu Tanimoto

Niigata University

$$
\text { June 13, } 2022
$$

Neutrinos, Flavour and Beyond 11-13 June, 2022
MITP SCIENTIFIC PROGRAM at Anacapri (Island of Capri), Italy

Outline of my talk

I Introduction

2 Modular symmetry
3 Modular invariant flavor model

4 Spontaneous CP violation
5 Prospect

1 Introduction

There are a lot of works challenging Flavor Problems of quarks and leptons by using Modular Symmetries.

Flavor mixing

CP violation
Mass hierarchy

2 Modular symmetry

Superstring theory 10D Our universe is 4D
 The extra 6D should be compactified.

Torus compactification

Compactification

We get 4D effective Lagrangian by integrating out over 6D.

$$
S=\int d^{4} x d^{6} y \mathcal{L}_{10 D} \rightarrow \int d^{4} x \mathcal{L}_{\mathrm{eff}}
$$

$\mathcal{L}_{\text {eff }}$ depends on the structure of

$>4 D$ effective theory depends on internal space
$2 D$ torus $\left(T^{2}\right)$ is equivalent to parallelogram with identification of confronted sides.

$(x, y) \sim(x, y)+n_{1} \alpha_{1}+n_{2} \alpha_{2}$

(e)

Two-dimensional torus T^{2} is obtained as

$$
\mathrm{T}^{2}=\mathbb{R}^{2} / \Lambda
$$

Λ is two-dimensional lattice, which is spanned by two lattice vectors

$$
\alpha_{1}=2 \pi R \quad \text { and } \quad \alpha_{2}=2 \pi R T
$$

$\tau=\alpha_{2} / \alpha_{1}$ is a modulus parameter (complex).
The same lattice is spanned by other bases under the transformation

$$
\binom{\alpha_{2}^{\prime}}{\alpha_{1}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\alpha_{2}}{\alpha_{1}} \quad \begin{aligned}
& \mathbf{a d}-\mathbf{b} \mathbf{c}=1 \\
& \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \text { are integer } \operatorname{SL}(2, Z)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\alpha_{2}^{\prime}}{\alpha_{1}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\alpha_{2}}{\alpha_{1}} \\
& \tau=\alpha_{2} / \alpha_{1} \\
& a d-b c=1 \\
& a, b, c, d \text { are integer } \\
& \text { Modular transformation }
\end{aligned}
$$

Modular transf. does not change the lattice (torus)
$4 D$ effective theory (depends on τ) must be invariant under modular transf.

$$
\text { e.g.) } \mathcal{L}_{\text {eff }} \supset Y(\tau)_{i j} \phi \overline{\psi_{i}} \psi_{j}
$$

The modular transformation is generated by S and T.

$$
\tau \xrightarrow{\boldsymbol{\gamma}} \tau^{\prime}=\frac{a \tau+b}{c \tau+d}
$$

$$
\begin{gathered}
T: \tau \longrightarrow \tau+1 \\
\text { Dicrete shift symmetry }
\end{gathered}
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

$\tau=\alpha_{2} / \alpha_{1}$

$$
\begin{array}{rlrl}
S: \tau \longrightarrow & -\frac{1}{\tau}, & & \text { Duality } \\
T: \tau \longrightarrow & \tau+1 . & \text { Dicrete shift symmetry } \\
& \begin{array}{c}
S^{2}=1, \\
\pm 1 \text { is identified }
\end{array} & (S T)^{3}=1 .
\end{array}
$$

generate infinite discrete group

Modular group

$$
\begin{aligned}
& \text { Modular group } \\
& \Gamma \simeq\left\{S, T \mid S^{2}=\mathbb{I},(S T)^{3}=\mathbb{I}\right\}
\end{aligned}
$$

Modular group has subgroups
Impose

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z),\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod N)\right\}
$$

called principal congruence subgroups (normal subgroup)

$$
\Gamma_{N} \equiv \Gamma / \Gamma(N) \text { quotient group finite group of level } N
$$

$$
\Gamma_{\mathrm{N}} \simeq\left\{S, T \mid S^{2}=\mathbb{I},(S T)^{3}=\mathbb{I}, T^{N}=\mathbb{I}\right\}
$$

$$
\Gamma_{2} \simeq S_{3} \quad \Gamma_{3} \simeq A_{4} \quad \Gamma_{4} \simeq S_{4} \quad \Gamma_{5} \simeq A_{5}
$$

We can consider effective theories with Γ_{N} symmetry.

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }} \in f(\tau) \phi^{(1)} \cdots \phi^{(n)} \quad f(\tau), \phi^{(I)}: \text { non-trivial rep. of } \Gamma_{\mathrm{N}} \\
& \quad \text { modular form }
\end{aligned}
$$

In cases of $\Gamma_{N}(N=2,3,4,5)\left(S_{3}, A_{4}, S_{4}, A_{5}\right) \quad \boldsymbol{\gamma}=\mathbf{S}, \mathbf{T}$
explicit forms of $f(T)$ have been obtained.
$\tau \longrightarrow \tau^{\prime}=\gamma \tau=\frac{a \tau+b}{c \tau+d}$
Modular transformation

Chiral superfields
Automorphy factor

$$
f_{i}(\tau) \longrightarrow f_{i}(\gamma \tau)=(c \tau+d)^{k}(\gamma)_{i)} f_{j}(\tau)
$$ modular forms of weight k representation matrix

Modular forms are explicitly given if weight \mathbf{k} is fixed. On the other hand, chiral superfields are not modular forms and we have no restriction on the possible value of weight k_{I}, a priori.

Consider $\quad f_{i}(\tau) \phi^{(I)} \phi^{(J)} H$

Automorphy factor $\quad(c \tau+d)^{k}(c \tau+d)^{-k_{I}}(c \tau+d)^{-k_{J}}=(c \tau+d)^{k-k_{I}-k_{J}}$ vanishes if $k=k_{I}+k_{J}$
$\mathscr{L}_{\text {eff }}$ is modular invariant if sum of weights satisfy $\sum k_{I}=k$.

Modular invariant kinetic terms of matters are obtained:

Kähler potential $\quad K^{\text {matter }}=\frac{1}{[i(\bar{\tau}-\tau)]^{k_{I}}}\left|\phi^{(I)}\right|^{2}$

A_{4} Modular symmetry

$$
\Gamma_{\mathrm{N}} \simeq\left\{S, T \mid S^{2}=\mathbb{I},(S T)^{3}=\mathbb{I}, T^{N}=\mathbb{I}\right\}
$$

Taking $\mathrm{T}^{3}=1$, we get \mathbf{A}_{4} modular group (Γ_{3}).

\# of modular forms is $k+1$ (for $\mathbf{N}=3$) k: weight

There are 3 linealy independent modular forms for weight 2, which forms \mathbf{A}_{4} triplet.

Fundamental domain of τ on $\operatorname{SL}(\mathbf{2}, \mathbf{Z})$

$$
\begin{aligned}
S & =\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \\
T & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
\end{aligned}
$$

A_{4} triplet of modular forms with weight 2

$$
\begin{aligned}
f_{i}(\gamma \tau) & =(c \tau+d)^{k} \rho(\gamma)_{i j} f_{j}(\tau) \quad \quad \text { F. Feruglio, arXiv:1706.08749 } \\
Y_{1}(\tau) & =\frac{i}{2 \pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}-\frac{27 \eta^{\prime}(3 \tau)}{\eta(3 \tau)}\right) \\
Y_{2}(\tau) & =\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\omega^{2} \frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\omega \frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}\right) \\
Y_{3}(\tau) & =\frac{-i}{\pi}\left(\frac{\eta^{\prime}(\tau / 3)}{\eta(\tau / 3)}+\omega \frac{\eta^{\prime}((\tau+1) / 3)}{\eta((\tau+1) / 3)}+\omega^{2} \frac{\eta^{\prime}((\tau+2) / 3)}{\eta((\tau+2) / 3)}\right)
\end{aligned}
$$

$$
\eta(\tau)=q^{1 / 24} \prod_{0}^{\infty}\left(1-q^{n}\right) \quad \text { Dedekind eta-function } \quad Y_{2}^{2}+2 Y_{1} Y_{3}=0
$$

$$
\eta(-1 / \tau)=\sqrt{-i \tau} \eta(\tau), \quad \eta(\tau+1)=e^{i \pi / 12} \eta(\tau)
$$

$$
\left(\begin{array}{l}
Y_{1}(\tau) \\
Y_{2}(\tau) \\
Y_{3}(\tau)
\end{array}\right)=\left(\begin{array}{c}
1+12 q+36 q^{2}+12 q^{3}+\ldots \\
-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\ldots\right) \\
-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\ldots\right)
\end{array}\right)
$$

$$
q=e^{2 \pi i \tau}
$$

3 Modular invariant flavor model

We can construct quark / lepton mass matrices in the framework of modular symmetry.

Non-Abelian Discrete Symmetry
Irreducible representations: 1, 1', 1", 3 The minimum group containing triplet

It could be adjusted to Family Symmetry.
3: $\left(u_{L}, c_{L}, t_{L}\right), 1: u_{R}, 1^{\prime \prime}: c_{R}, 1^{\prime}: t_{R}$

Symmetry of tetrahedron

Flavor symmetry should be broken !
We should know how to break the flavor symmetry.

Quarks

Mass matrix in $\mathbf{S M}$: $y_{q} q^{c}\langle H\rangle Q$
Let us introduce Modulus (in the case of A_{4}).
The modulus τ plays the role of a spurion

VEV of H and τ give quark mass terms

$$
\left.\alpha\langle H\rangle Y_{1}^{(k)}(\langle\tau\rangle) u^{c} u+\alpha\langle H\rangle Y_{3}^{(k)}(\langle\tau\rangle\rangle\right) u^{c} c+\alpha\langle H\rangle Y_{2}^{(k)}(\langle\tau\rangle) u^{c} t
$$

up-type quark masses are given as

$$
\alpha_{u} u_{\mathbf{1}}^{c} H Y_{\mathbf{3}}^{(k)}(\tau) Q_{\mathbf{3}}+\beta_{u} c_{\mathbf{1}^{\prime}}^{c} H Y_{\mathbf{3}}^{(k)}(\tau) Q_{\mathbf{3}}+\gamma_{u} t_{\mathbf{1}^{\prime}}^{c} H Y_{\mathbf{3}}^{(k)}(\tau) Q_{\mathbf{3}}
$$

We can construct a simple mass matrix by using weight $\mathbf{2}$ modular forms

$$
\mathrm{A}_{4} \text { assignments: left-handed doublet } 3 \text { right-handed singlets } 1,1^{\prime \prime}, 1^{\prime}
$$

$$
M_{\mathrm{f}}=\left(\begin{array}{ccc}
\alpha_{q} & 0 & 0 \\
0 & \beta_{q} & 0 \\
0 & 0 & \gamma_{q}
\end{array}\right)\left(\begin{array}{ccc}
Y_{1} & Y_{3} & Y_{2} \\
Y_{2} & Y_{1} & Y_{3} \\
Y_{3} & Y_{2} & Y_{1}
\end{array}\right)_{R L}
$$

Typical mass matrix of fermions by using weight 2 modular forms for both up- and down-quarks and charged leptons

6 real prarameters $\alpha_{q}, \beta_{q}, \gamma_{q}$ and τ are responsible for quark mass matrices. However, this simple structure for up and down quarks is inconsistent with $V_{u b}$.

An example quark mass matrix

H. Okada, M. Tanimoto, Eur. Phys. J C 81 (2020) 5, 053B05, arXiv:1905.13421

	Q	$\left(d^{c}, s^{c}, b^{c}\right)$	$\left(u^{c}, c^{c}, t^{c}\right)$	$H_{u, d}$	$\mathbf{Y}_{3}^{(2)}$	$\mathbf{Y}_{3}^{(6)}, \mathbf{Y}_{3^{\prime}}^{(6)}$
$S U(2)$	2	1	1	2	1	1
A_{4}	3	$\left(1,1^{\prime \prime}, 1^{\prime}\right)$	$\left(1,1^{\prime \prime}, 1^{\prime}\right)$	1	3	$3, \quad 3^{\prime}$
$-k_{I}$	$-2)$	$(0,0,0)$	$(-4,-4,-4)$	0	$k=2$	$k=6$

$$
\begin{gathered}
M_{d}=\left(\begin{array}{ccc}
\alpha_{d} & 0 & 0 \\
0 & \beta_{d} & 0 \\
0 & 0 & \gamma_{d}
\end{array}\right)\left(\begin{array}{lll}
Y_{1} & Y_{3} & Y_{2} \\
Y_{2} & Y_{1} & Y_{3} \\
Y_{3} & Y_{2} & Y_{1}
\end{array}\right)_{R L}, \text { weight } 2 \text { modular forms } \\
M_{u}=\left(\begin{array}{ccc}
\alpha_{u} & 0 & 0 \\
0 & \beta_{u} & 0 \\
0 & 0 & \gamma_{u}
\end{array}\right)\left[\left(\begin{array}{ccc}
Y_{1}^{(6)} & Y_{3}^{(6)} & Y_{2}^{(6)} \\
Y_{2}^{(6)} & Y_{1}^{(6)} & Y_{3}^{(6)} \\
Y_{3}^{(6)} & Y_{2}^{(6)} & Y_{1}^{(6)}
\end{array}\right)+\left(\begin{array}{ccc}
g_{u 1} & 0 & 0 \\
0 & g_{u 2} & 0 \\
0 & 0 & g_{u 3}
\end{array}\right)\left(\begin{array}{lll}
Y_{1}^{\prime(6)} & Y_{3}^{\prime(6)} & Y_{2}^{\prime(6)} \\
Y_{2}^{\prime(6)} & Y_{1}^{\prime(6)} & Y_{3}^{\prime(6)} \\
Y_{3}^{\prime(6)} & Y_{2}^{\prime(6)} & Y_{1}^{\prime(6)}
\end{array}\right)\right]_{R L} \\
\text { weight } 6 \text { modular forms }
\end{gathered}
$$

We have additional 3 complex parameters.

\# of modular forms is $\mathbf{k + 1}$

weight 6 k=6

7 modular forms

$$
Y_{1}^{(6)}=Y_{1}^{3}+Y_{2}^{3}+Y_{3}^{3}-3 Y_{1} Y_{2} Y_{3}
$$

$$
Y_{\mathbf{3}}^{(6)} \equiv\left(\begin{array}{c}
Y_{1}^{(6)} \\
Y_{2}^{(6)} \\
Y_{3}^{(6)}
\end{array}\right)=\left(Y_{1}^{2}+2 Y_{2} Y_{3}\right)\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right), \quad Y_{3^{\prime}}^{(6)} \equiv\left(\begin{array}{c}
Y_{1}^{\prime(6)} \\
Y_{2}^{\prime(6)} \\
Y_{3}^{\prime(6)}
\end{array}\right)=\left(Y_{3}^{2}+2 Y_{1} Y_{2}\right)\left(\begin{array}{c}
Y_{3} \\
Y_{1} \\
Y_{2}
\end{array}\right)
$$

Charged Leptons

Left-handed 3 of $A_{4}:(l e, l \mu, \ell \tau)$, Right-handed $1: e_{R}, 1^{\prime \prime}: \mu_{R}, 1^{\prime}: T_{R}$

$$
\begin{gathered}
w_{e}=\alpha e_{R} H_{d}(L Y)+\beta \mu_{R} H_{d}(L Y)+\gamma \tau_{R} H_{d}(L Y) \\
\mathbf{1}_{\mathbf{R}}{ }^{\left({ }^{\left.()^{(\cdot)}\right)} \times \mathbf{3}_{\mathrm{L}} \times \mathbf{3}_{\mathbf{Y}} \Rightarrow \mathbf{1}\right.}
\end{gathered}
$$

α, β, γ are fixed by the charged lepton masses

$$
\mathbf{M}_{\mathbf{E}}=\operatorname{diag}[\alpha, \beta, \gamma]\left(\begin{array}{lll}
Y_{1} & Y_{3} & Y_{2} \\
Y_{2} & Y_{1} & Y_{3} \\
Y_{3} & Y_{2} & Y_{1}
\end{array}\right)
$$

If τ (complex) is fixed, modular symmetry is broken, and flavor structure of mass matrices is determined including CP violation !

Modulus $\boldsymbol{\tau}$ controls flavor mixing and CP phase ???

4 Spontaneous CP violation

At present,
CP violation is observed in quark sector (CKM matrix), where CP is explicitly broken.
In the near future, CP violation will be confirmed by the neutrino oscillation experiments.
In addition,
T violation is expected to be observed in EDM of q / I.
Is there other souces of $C P(T)$ violation?
What is the origin of $C P(T)$ violation?
High energy theory is often CP invariant, then CP is violated spontaneously.
VEV of modulus τ is possibly the source of CP violation !

CP symmetry

P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 07 (2019) 165

CP transformation

$$
\begin{gathered}
\tau \xrightarrow{\mathrm{CP}}-\tau^{*}, \quad \psi(x) \xrightarrow{\mathrm{CP}} X_{r} \bar{\psi}\left(x_{P}\right), \quad \mathbf{Y}_{\mathbf{r}}^{(\mathrm{k})}(\tau) \xrightarrow{\mathrm{CP}} \mathbf{Y}_{\mathbf{r}}^{(\mathrm{k})}\left(-\tau^{*}\right)=\mathbf{X}_{\mathbf{r}} \mathbf{Y}_{\mathbf{r}}^{(\mathrm{k}) *}(\tau) \\
\mathbf{X}_{\mathrm{r}} \rho_{\mathbf{r}}^{*}(g) \mathbf{X}_{\mathbf{r}}^{-1}=\rho_{\mathbf{r}}\left(g^{\prime}\right), \quad g, g^{\prime} \in G
\end{gathered}
$$

$X_{r}=\mathbb{1}_{r}$ can be taken in the base of symmetric S and T.

After fixing τ, real part of τ provides imaginary part of the mass matrices.

$$
\begin{aligned}
& Y_{1}(\tau)=1+12 q+36 q^{2}+12 q^{3}+\cdots, \\
& Y_{2}(\tau)=-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\cdots\right), \\
& Y_{3}(\tau)=-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\cdots\right) .
\end{aligned}
$$

CP conserved modular invariant theory

$$
\tau \xrightarrow{\text { CP }}-\tau^{*}, \quad \psi(x) \xrightarrow{\text { CP }} X_{r} \bar{\psi}\left(x_{P}\right), \quad \mathrm{Y}_{\mathrm{r}}^{(k)}(\tau) \xrightarrow{\text { CP }} \mathrm{Y}_{\mathrm{r}}^{(k)}\left(-\tau^{*}\right)=\mathrm{X}_{\mathrm{r}} \mathrm{Y}_{\mathrm{r}}^{(k) *}(\tau)
$$

We can construct CP invariant mass matrices.

$$
M_{E}(\tau)=M_{E}^{*}(\tau), \quad M_{\nu}(\tau)=M_{\nu}^{*}(\tau) \quad \mathrm{X}_{\mathrm{r}}=\mathbb{1}_{\mathbf{r}}
$$

Is the CP violation realized by τ, which is consistent with the observed lepton mixing angles and neutrino masses?

Simple model of CP violation in Lepton sector

H.Okada, M.Tanimoto, JHEP 03(202I),010 [arXiv:20I2.01688 [hep-ph]]

$$
\begin{aligned}
& M_{E}=v_{d}\left(\begin{array}{ccc}
\alpha_{e} & 0 & 0 \\
0 & \beta_{e} & 0 \\
0 & 0 & \gamma_{e}
\end{array}\right)\left(\begin{array}{ccc}
Y_{1} & Y_{3} & Y_{2} \\
Y_{2} & Y_{1} & Y_{3} \\
Y_{3} & Y_{2} & Y_{1}
\end{array}\right)_{R L} \\
& w_{\nu}=-\frac{1}{\Lambda}\left(H_{u} H_{u} L L \mathbf{Y}_{\mathbf{r}}^{(\mathbf{k})}\right)_{1} \quad \text { Weinberg operator by using Neight } 4 \text { modular forms } \\
& 5 \text { modular forms } \\
& \left.\left.M_{\nu}=\frac{v_{u}^{2}}{\Lambda}\left[\left(\begin{array}{ccc}
2 Y_{1}^{(4)} & -Y_{3}^{(4)} & -Y_{2}^{(4)} \\
-Y_{3}^{(4)} & 2 Y_{2}^{(4)} & -Y_{1}^{(4)} \\
-Y_{2}^{(4)} & -Y_{1}^{(4)} & 2 Y_{3}^{(4)}
\end{array}\right)+\underline{g}_{\nu}\right) Y_{1}^{(4)}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+g_{\nu}\right) \mathbf{Y}_{1^{\prime}}^{(4)}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right]_{L L}
\end{aligned}
$$

\# of modular forms is $\mathbf{k + 1}$

weight 4 k=4

5 modular forms

$$
\begin{array}{ll}
Y_{1}^{(4)}(\tau)=Y_{1}(\tau)^{2}+2 Y_{2}(\tau) Y_{3}(\tau), & Y_{1^{\prime}}^{(4)}(\tau)=Y_{3}(\tau)^{2}+2 Y_{1}(\tau) Y_{2}(\tau), \\
Y_{\mathbf{1}^{\prime \prime}}^{(4)}(\tau)=Y_{2}(\tau)^{2}+2 Y_{1}(\tau) Y_{3}(\tau)=0, & Y_{3}^{(4)}(\tau)=\left(\begin{array}{l}
Y_{1}^{(4)}(\tau) \\
Y_{2}^{(4)}(\tau) \\
Y_{3}^{(4)}(\tau)
\end{array}\right)=\left(\begin{array}{l}
Y_{1}(\tau)^{2}-Y_{2}(\tau) Y_{3}(\tau) \\
Y_{3}(\tau)^{2}-Y_{1}(\tau) Y_{2}(\tau) \\
Y_{2}(\tau)^{2}-Y_{1}(\tau) Y_{3}(\tau)
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& M_{E}(\tau) \xrightarrow{C P} M_{E}\left(-\tau^{*}\right)=M_{E}^{*}(\tau)=v_{d}\left(\begin{array}{ccc}
\alpha_{e} & 0 & 0 \\
0 & \beta_{e} & 0 \\
0 & 0 & \gamma_{e}
\end{array}\right)\left(\begin{array}{lll}
Y_{1}(\tau)^{*} & Y_{3}(\tau)^{*} & Y_{2}(\tau)^{*} \\
Y_{2}(\tau)^{*} & Y_{1}(\tau)^{*} & Y_{3}(\tau)^{*} \\
Y_{3}(\tau)^{*} & Y_{2}(\tau)^{*} & Y_{1}(\tau)^{*}
\end{array}\right)_{R L} \\
& M_{\nu}(\tau) \xrightarrow{C P} M_{\nu}\left(-\tau^{*}\right)=M_{\nu}^{*}(\tau) \\
& =\frac{v_{u}^{2}}{\Lambda}\left[\left(\begin{array}{cc}
2 Y_{1}^{(4) *}(\tau) & -Y_{3}^{(4) *}(\tau) \\
-Y_{3}^{(4) *}(\tau) & 2 Y_{2}^{(4) *}(\tau) \\
-Y_{2}^{(4) *}(\tau) & -Y_{1}^{(4) *}(\tau) * \\
-Y_{1}^{(4) *}(\tau) \\
-(\tau) & 2 Y_{3}^{(4) *}(\tau)
\end{array}\right)+g_{1}^{\nu} \mathbf{Y}_{1}^{(4) *}(\tau)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+g_{2}^{\nu} \mathbf{Y}_{1^{(4) *}(\tau)}^{(4)}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\right]
\end{aligned}
$$

$$
\mathrm{Y}_{\mathrm{r}}^{(\mathrm{k})}(\tau) \xrightarrow{\mathrm{CP}} \mathrm{Y}_{\mathrm{r}}^{(\mathrm{k})}\left(-\tau^{*}\right)=\mathrm{X}_{\mathrm{r}} \mathrm{Y}_{\mathrm{r}}^{(\mathrm{k}) *}(\tau) \quad \mathrm{X}_{\mathrm{r}}=\mathbb{1}_{\mathrm{r}}
$$

Impose CP invariance

$M_{E}(\tau)=M_{E}^{*}(\tau), \quad M_{\nu}(\tau)=M_{\nu}^{*}(\tau) \quad$ which leads to g_{1}^{ν} and g_{2}^{ν} being real.
6 parameters + $\boldsymbol{T}=8$ parameters
3 charged lepton masses+ 2 neutrino mass differences+ 3 mixing angles $=8$

NH for neutrinos

Figure 1: Allowed regions of τ for NH. Green, yellow and red correspond to $2 \sigma, 3 \sigma, 5 \sigma$ confidence levels, respectively. The solid curve is the boundary of the fundamental domain, $|\tau|=1$.

Alternative: Seesaw Model of Neutrinos

H.Okada, Y.Shimizu, M.Tanimoto,T.YoshidaJHEP 07(2021) 184 [arXiv:2105.14292 [hep-ph]].

	L	$\left(e^{c}, \mu^{c}, \tau^{c}\right)$	$N c$	H_{u}	H_{d}	$Y_{3}^{(k)}$
$S U(2)$	2	1	1	2	2	1
A_{4}	3	$\left(1,1^{\prime \prime}, 1^{\prime}\right)$	3	1	1	3
weight	-1	$\left(k_{e}, k_{\mu}, k_{\tau}\right)$	-1	0	0	k

$$
\begin{aligned}
& k_{e}=-1, k_{\mu}=-3, k_{\tau}=-5 \\
& M_{E}(\tau)=v_{d}\left(\begin{array}{ccc}
\alpha_{e} & 0 & 0 \\
0 & \beta_{e} & 0 \\
0 & 0 & \gamma_{e}
\end{array}\right)\left(\begin{array}{ccc}
Y_{1}(\tau) & Y_{3}(\tau) & Y_{2}(\tau) \\
Y_{2}^{(4)}(\tau) & Y_{1}^{(4)}(\tau) & Y_{3}^{(4)}(\tau) \\
Y_{3}^{(6)}(\tau)+g_{e} Y_{3}^{\prime(6)}(\tau) & Y_{2}^{(6)}(\tau)+g_{e} P_{2}^{\prime(6)}(\tau) & Y_{1}^{(6)}(\tau)+g_{e} Y_{1}^{\prime(6)}(\tau)
\end{array}\right) \\
& M_{D}=\gamma_{\nu} v_{u}\left(\begin{array}{ccc}
2 Y_{1} & \left(-1+g_{D}\right) Y_{3} & \left(-1-g_{D}\right) Y_{2} \\
\left(-1-g_{D}\right) Y_{3} & 2 Y_{2} & \left(-1+g_{D}\right) Y_{1} \\
\left(-1+g_{D}\right) Y_{2} & \left(-1-g_{D}\right) Y_{1} & 2 Y_{3}
\end{array}\right) \quad \begin{array}{c}
\text { Also 8 parameters } \\
\mathbf{g}_{\mathrm{e}} \text { and } \mathbf{g}_{\mathrm{D}} \text { are real. } \\
M_{N}=\Lambda\left(\begin{array}{ccc}
2 Y_{1} & -Y_{3} & -Y_{2} \\
-Y_{3} & 2 Y_{2} & -Y_{1} \\
-Y_{2} & -Y_{1} & 2 Y_{3}
\end{array}\right)
\end{array} M_{\nu}=M_{D}^{\mathrm{T}} M_{N}^{-1} M_{D}
\end{aligned}
$$

5 Prospect

What is a Principle of fixing modulus $\boldsymbol{\tau}$?

\& Moduli stabilization (non-perturbative effect, model dependent)
Some models indicate the potential minimum at nearby boundary of fundamental domain.
P.P.Novichkov, J.T.Penedo, S.T.Petcov ,JHEP03 (2022) I49, arXiv:220I. 02020 \mathcal{H} Fixed point of τ Residual symmetry

- $\mathbf{Z}_{2}: \tau=\mathbf{i} \quad \mathbf{Z}_{3}: \tau=-I / 2+\sqrt{3} / 2 i$

S symmetry ST symmetery
P.P.Novichkov, J.T.Penedo, S.T.Petcov
arXiv:2201.02020

Okada and Tanimoto, PRDIO3(202I)OI5005 arXiv:2009.14242

$$
\operatorname{Re}[t a u]
$$

Interesting physics of flavors

$$
\begin{array}{lll}
\Gamma_{2} \simeq S_{3} & \Gamma_{3} \simeq A_{4} & \Gamma_{4} \simeq S_{4} \quad \Gamma_{5} \simeq A_{5} \ldots \ldots . \\
\Gamma_{3}^{\prime} \simeq A_{4}^{\prime} & \Gamma_{4}^{\prime} \simeq S_{4}^{\prime} & \Gamma_{5}^{\prime} \simeq A_{5}^{\prime} \quad \text { (double covering groups) }
\end{array}
$$

- Realization of quarks/leptons mass hierarchy at nearby fixed points
- EDM, g-2, FCNC in SMEFT
- Multi-Higgs
- Leptogenesis from modulus τ (CP violating source)

Modular symmerty provides new approachs for flavor problems !

Back up slides

Generalized CP Symmetry

Neufeld，Grimus，Ecker，l987
CP symmetry is non－trivial when flavor symmetry is set in the Yukawa sector．
Transformations of Irreducible representation in flavor group G $\psi(x) \xrightarrow{g} \rho_{\mathrm{r}}(g) \psi(x), \quad g \in G_{f} \quad$ under a Flavor Symmetry $\psi(x) \xrightarrow{C P} X_{\mathrm{r}} \bar{\psi}\left(x_{P}\right) \quad x=(t, \mathrm{x}), x_{P}=(t,-\mathrm{x})$

If $X_{\mathrm{r}}=\mathbb{1}_{\mathrm{r}}$ ，we have canonical CP transformation． However，under the CP invariance of Lagrangian， X_{r} is not necessary element of flavor group G
$\mathbf{X}_{\mathbf{r}}$ should satisfy a condition

$$
\psi(x) \xrightarrow{C P} X_{\mathbf{r}} \bar{\psi}\left(x_{P}\right) \xrightarrow{g} X_{\mathbf{r}} \rho_{\mathbf{r}}^{*}(g) \bar{\psi}\left(x_{P}\right) \xrightarrow{C P^{-1}} X_{\mathbf{r}} \rho_{\mathbf{r}}^{*}(g) X_{\mathbf{r}}^{-1} \psi(x)
$$

$C P \longrightarrow X_{\mathbf{r}} \varphi^{*}\left(x^{\prime}\right)$

Holthhausen，Lindner，Schmidt， JHEP1304（2012），arXiv：1211．6953
Consistency condition
自己同型 automorphism of G_{f}
$X_{\mathbf{r}}=\rho_{\mathbf{r}}(g), g \in G_{f}$ for $\mathbf{S}_{\mathbf{3}}, \mathbf{S}_{\mathbf{4}}, \mathbf{A}_{\mathbf{4}}, \mathbf{A}_{\mathbf{5}}$
$X_{\mathbf{r}} \rho_{\mathbf{r}}^{*}(g) \varphi^{*}\left(x^{\prime}\right)$
$\varphi(x)$

Consider 3 fixed points in $\mathbf{A}_{\mathbf{4}}$ modular symmetry

$\uparrow T(\tau \rightarrow \tau+1)$ preserved : < $\tau>=\infty i(q=0) \quad\left(Y_{1}, Y_{2}, Y_{3}\right)=(1,0,0) \quad Z_{3}:\left\{1, T, T^{2}\right\}$
-S $(\tau \rightarrow-1 / \tau)$ preserved: $\langle\tau\rangle=i\left(q=e^{-2 \pi}\right)\left(Y_{1}, Y_{2}, Y_{3}\right)=Y_{1}(i)(I, I-\sqrt{3},-2+\sqrt{2}) 2,\{1, S\}$

- ST preserved: < $\tau>\omega\left(Y_{1}, Y_{2}, Y_{3}\right)=Y_{1}(i)\left(I, \omega,-I / 2 \omega^{2}\right)$

$q=e^{2 \pi i \tau}$| $Y_{1}(\tau)=1+12 q+36 q^{2}+12 q^{3}+\cdots$, |
| :--- |
| $Y_{2}(\tau)=-6 q^{1 / 3}\left(1+7 q+8 q^{2}+\cdots\right)$, |
| $Y_{3}(\tau)=-18 q^{2 / 3}\left(1+2 q+5 q^{2}+\cdots\right)$. |

$\uparrow Z_{3}\{1, T, T 2\}:$

- $Z_{2}\{1, \mathrm{~S}\}:$
$\mathrm{Z}_{3}\left\{1, \mathrm{ST},(\mathrm{ST})^{2}\right\}:$
Mixing matrices which diagonalise $M_{q}{ }^{\dagger}{ }_{q}$ also diagonalize
35 T, S and ST, respectively!

Modular transformation is the transformation of modulus τ

$$
\begin{aligned}
& \tau \longrightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d} \quad \begin{array}{l}
S: \tau \longrightarrow-\frac{1}{\tau}, \\
T: \tau \longrightarrow \tau+1 .
\end{array} \quad \begin{array}{l}
\text { weight } 2 ; \mathbf{k = 2} \\
3 \text { modular forms }
\end{array} \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \text { S transformation } \\
& \left(\begin{array}{l}
Y_{1}(-1 / \tau) \\
Y_{2}(-1 / \tau) \\
Y_{3}(-1 / \tau)
\end{array}\right)=\tau^{2} \rho(S)\left(\begin{array}{c}
Y_{1}(\tau) \\
Y_{2}(\tau) \\
Y_{3}(\tau)
\end{array}\right), \quad\left(\begin{array}{c}
Y_{1}(\tau+1) \\
Y_{2}(\tau+1) \\
Y_{3}(\tau+1)
\end{array}\right)=\rho(T)\left(\begin{array}{c}
Y_{1}(\tau) \\
Y_{2}(\tau) \\
Y_{3}(\tau)
\end{array}\right) . \\
& (c \tau+d)^{k} \quad \mathrm{ct}+\mathrm{d}=-\mathrm{\tau} \quad(c \tau+d)^{k} \quad \mathrm{ct}+\mathrm{d}=\mathrm{l} \\
& \rho(\mathrm{~S})=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), \quad \rho(\mathrm{T})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \quad \omega=\exp \left(i \frac{2}{3} \pi\right)
\end{aligned}
$$

Flavor mixing

Neutrino large mixing angles are reproduced easily thanks to Non-Abelian discrete symmetery, $\mathbf{A}_{4}, \mathbf{S}_{4} \ldots$

Mass hierarchy

Mass hierarchy of quark and charged leptons could be reproduced thanks to fixed points
F. Feruglio, V.Gherardi, A.Romanino, A.Titov, 05 (2021)242 arXiv:2101.08718
P.P.Novichkov, J.T.Penedo, S.T.Petcov, JHEP04 (2021) 206 arXiv:2102.07488

CP violation

Modulus τ is a source of CP violation.
Spontaneous CP violation could be realized via modulus τ.
P.P.Novichkov, J.T.Penedo, S.T.Petcov, A.V.Titov, JHEP 07(2019)165, arXiv:1905.11970
H.Okada, M.Tanimoto, JHEP 03(2021),010, arXiv:2012.01688

Let us consider Modular forms with higher weights $k=4,6$...

\# of modular forms is $\mathbf{k + 1}$

Weight 2
3 Modular forms

$$
\mathbf{Y}{ }^{(2)}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)
$$

Modular forms with higher weights are constructed by the tensor product of modular forms of weight 2

$$
\begin{aligned}
\left(\begin{array}{l}
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)_{3} \otimes\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)_{3}
\end{array}\right. & =\left(a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{2}\right)_{1} \oplus\left(a_{3} b_{3}+a_{1} b_{2}+a_{2} b_{1}\right)_{1^{\prime}} \\
& \oplus\left(a_{2} b_{2}+a_{1} b_{3}+a_{3} b_{1}\right)_{1^{\prime \prime}} \\
& \oplus \frac{1}{3}\left(\begin{array}{l}
2 a_{1} b_{1}-a_{2} b_{3}-a_{3} b_{2} \\
2 a_{3} b_{3}-a_{1} b_{2}-a_{2} b_{1} \\
2 a_{2} b_{2}-a_{1} b_{3}-a_{3} b_{1}
\end{array}\right)_{3} \oplus \frac{1}{2}\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{1} b_{2}-a_{2} b_{1} \\
a_{3} b_{1}-a_{1} b_{3}
\end{array}\right)_{3}
\end{aligned}
$$

$$
1 \otimes 1=1, \quad 1^{\prime} \otimes 1^{\prime}=1^{\prime \prime}, \quad 1^{\prime \prime} \otimes 1^{\prime \prime}=1^{\prime}, \quad 1^{\prime} \otimes 1^{\prime \prime}=1
$$

J.T.Penedo, S.T.Petcov, Nucl.Phys.B939(2019)292

$$
\mathbf{Y}_{1}^{(4)}=Y_{1}^{2}+2 Y_{2} Y_{3}, \quad \mathbf{Y}_{1^{\prime}}^{(4)}=Y_{3}^{2}+2 Y_{1} Y_{2}, \quad \mathbf{Y}_{1^{\prime \prime}}^{(4)}=Y_{2}^{2}+2 Y_{1} Y_{3}=0
$$

Weight 4
5 Modular forms

$$
\mathbf{Y}_{3}^{(4)}=\left(\begin{array}{c}
Y_{1}^{2}-Y_{2} Y_{3} \\
Y_{3}^{2}-Y_{1} Y_{2} \\
Y_{2}^{2}-Y_{1} Y_{3}
\end{array}\right)
$$

$$
\mathbf{Y}_{1}^{(6)}=Y_{1}^{3}+Y_{2}^{3}+Y_{3}^{3}-3 Y_{1} Y_{2} Y_{3}
$$

Weight 6
7 Modular forms

$$
\mathbf{Y}_{3}^{(6)} \equiv\left(\begin{array}{c}
Y_{1}^{(6)} \\
Y_{2}^{(6)} \\
Y_{3}^{(6)}
\end{array}\right)=\left(\begin{array}{c}
Y_{1}^{3}+2 Y_{1} Y_{2} Y_{3} \\
Y_{1}^{2} Y_{2}+2 Y_{2}^{2} Y_{3} \\
Y_{1}^{2} Y_{3}+2 Y_{3}^{2} Y_{2}
\end{array}\right), \quad Y_{3^{\prime}}^{(6)} \equiv\left(\begin{array}{c}
Y_{1}^{\prime(6)} \\
Y_{2}^{\prime(6)} \\
Y_{3}^{\prime(6)}
\end{array}\right)=\left(\begin{array}{c}
Y_{3}^{3}+2 Y_{1} Y_{2} Y_{3} \\
Y_{3}^{2} Y_{1}+2 Y_{1}^{2} Y_{2} \\
Y_{3}^{2} Y_{2}+2 Y_{2}^{2} Y_{1}
\end{array}\right)
$$

Consider the case of Normal neutrino mass hierarchy

$$
\mathrm{m}_{1}<\mathrm{m}_{2}<\mathrm{m}_{3}
$$

A_{4} triplet 3 (Le, LH, LT) $3\left(V_{e R}, v_{\mu R}, v_{T R}\right)$
A_{4} singlets $e_{R} 1 ; \mu_{R} 1^{\prime \prime} ; T_{R} 1^{\prime}$

$$
\begin{aligned}
& \mathcal{Y}_{e}=\left(\begin{array}{lll}
\alpha Y_{1} & \alpha Y_{3} & \alpha Y_{2} \\
\beta Y_{2} & \beta Y_{1} & \beta Y_{3} \\
\gamma Y_{3} & \gamma Y_{2} & \gamma Y_{1}
\end{array}\right) \\
& \mathcal{Y}_{\nu}=\left(\begin{array}{ccc}
2 g_{1} Y_{1} & \left(-g_{1}+g_{2}\right) Y_{3} & \left(-g_{1}-g_{2}\right) Y_{2} \\
\left(-g_{1}-g_{2}\right) Y_{3} & 2 g_{1} Y_{2} & \left(-g_{1}+g_{2}\right) Y_{1} \\
\left(-g_{1}+g_{2}\right) Y_{2} & \left(-g_{1}-g_{2}\right) Y_{1} & 2 g_{1} Y_{3}
\end{array}\right) \\
& \mathcal{M}_{R}=\left(\begin{array}{ccc}
2 Y_{1} & -Y_{3} & -Y_{2} \\
-Y_{3} & 2 Y_{2} & -Y_{1} \\
-Y_{2} & -Y_{1} & 2 Y_{3}
\end{array}\right) \Lambda \begin{array}{l}
\text { Parameters: } \\
\boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{\gamma}, \mathbf{g}_{2} / \mathbf{g}_{1}=\mathbf{g}, \boldsymbol{\tau}
\end{array}
\end{aligned}
$$

m_{e}, m_{μ}, m_{T} fix a, β, γ.

CP violation best-fit

Predicted $<\mathrm{m}_{\mathrm{ee}}>$

$m_{1} \simeq m_{2} \simeq 40 \mathrm{meV}$ and $m_{3} \simeq 60 \mathrm{meV}$ $\sum m_{i} \sim 140 \mathrm{meV}$
Planck 2018 results < 0.12 eV@ \wedge CDM model

Alternative successful charged lepton mass matrices

Original $M_{E}(\tau)=v_{d}\left(\begin{array}{ccc}\alpha_{e} & 0 & 0 \\ 0 & \beta_{e} & 0 \\ 0 & 0 & \gamma_{e}\end{array}\right)\left(\begin{array}{ccc}Y_{1}(\tau) & Y_{3}(\tau) & Y_{2}(\tau) \\ Y_{2}^{(4)}(\tau) & Y_{1}^{(4)}(\tau) & Y_{3}^{(4)}(\tau) \\ Y_{3}^{(6)}(\tau)+g_{e} Y_{3}^{\prime(6)}(\tau) & Y_{2}^{(6)}(\tau)+g_{e} Y_{2}^{\prime(6)}(\tau) & Y_{1}^{(6)}(\tau)+g_{e} Y_{1}^{\prime(6)}(\tau)\end{array}\right)$

$$
\left.\begin{array}{l}
M_{E}(\tau)=v_{d}\left(\begin{array}{ccc}
\alpha_{e} & 0 & 0 \\
0 & \beta_{e} & 0 \\
0 & 0 & \gamma_{e}
\end{array}\right)\left(\begin{array}{ccc}
Y_{1}(\tau) & Y_{3}(\tau) & Y_{2}(\tau) \\
Y_{2}(\tau) & Y_{1}(\tau) & Y_{3}(\tau) \\
Y_{3}^{(6)}(\tau)+g_{e} Y_{3}^{\prime(6)}(\tau) & Y_{2}^{(6)}(\tau)+g_{e} Y_{2}^{\prime(6)}(\tau) & Y_{1}^{(6)}(\tau)+g_{e} Y_{1}^{\prime(6)}(\tau)
\end{array}\right) \\
M_{E}(\tau)=v_{d}\left(\begin{array}{ccc}
\alpha_{e} & 0 & 0 \\
0 & \beta_{e} & 0 \\
0 & 0 & \gamma_{e}
\end{array}\right)\left(\begin{array}{ccc}
Y_{1}(\tau) & Y_{3}(\tau) & Y_{2}(\tau) \\
Y_{2}(\tau) & Y_{1}(\tau) & Y_{3}(\tau) \\
Y_{3}^{(8)}(\tau)+g_{e} Y_{3}^{\prime(8)}(\tau) & Y_{2}^{(8)}(\tau)+g_{e} Y_{2}^{\prime(8)}(\tau) & Y_{1}^{(8)}(\tau)+g_{e} Y_{1}^{\prime(8)}(\tau)
\end{array}\right) \\
M_{E}(\tau)=v_{d}\left(\begin{array}{ccc}
\alpha_{e} & 0 & 0 \\
0 & \beta_{e} & 0 \\
0 & 0 & \gamma_{e}
\end{array}\right)\left(\begin{array}{ccc}
Y_{1}(\tau) & Y_{3}(\tau) & Y_{2}(\tau) \\
Y_{2}^{(4)}(\tau) & Y_{1}^{(4)}(\tau) & Y_{3}^{(4)}(\tau) \\
Y_{3}^{(8)}(\tau)+g_{e} Y_{3}^{\prime(8)}(\tau) & Y_{2}^{(8)}(\tau)+g_{e} Y_{2}^{\prime(8)}(\tau) & Y_{1}^{(8)}(\tau)+g_{e} Y_{1}^{\prime(8)}(\tau)
\end{array}\right)
\end{array}\right)
$$

BAU via Leptogenesis

$$
Y_{B}=\frac{n_{B}}{s}=(0.852-0.888) \times 10^{-10}
$$

Figure 12: Predictive Y_{B} versus M_{1}. Points correspond to the output of section 4 at $\sqrt{\chi^{2}} \leq$ 3. Horizontal lines denote the upper and lower bounds of observed Y_{B} in Eq. (39). The blue solid curves denote the boundary of Y_{B}.

Figure 14: Predictive Y_{B} versus $\delta_{C P}$ at $M_{1}=$ $3.36 \times 10^{13} \mathrm{GeV}$. Points correspond to the low energy output of section 4 at $\sqrt{\chi^{2}} \leq 3$, where cyan and magenta correspond to positive and negative $\operatorname{Re}[\tau]$, respectively. Horizontal dashed line denotes the central value of observed Y_{B}.

	NH	IH
τ	$-0.0796+1.0065 i$	$0.0103+1.0812 i$
g_{1}^{ν}	0.124	-1.17
g_{2}^{ν}	-0.802	6.79
α_{e} / γ_{e}	6.82×10^{-2}	6.76×10^{-2}
β_{e} / γ_{e}	1.02×10^{-3}	1.02×10^{-3}
$\sin ^{2} \theta_{12}$	0.290	0.291
$\sin ^{2} \theta_{23}$	0.564	0.579
$\sin ^{2} \theta_{13}$	0.0225	0.0219
$\delta_{C P}^{\ell}$	258°	262°
$\left[\alpha_{21}, \alpha_{31}\right]$	$\left[330^{\circ}, 338^{\circ}\right]$	$\left[3.24^{\circ}, 182^{\circ}\right]$
$\sum m_{i}$	97.9 meV	153 meV
$\left\langle m_{e e}\right\rangle$	19.2 meV	59.1 meV
χ^{2}	1.98	4.12

$S: \tau \longrightarrow-\frac{1}{\tau}, \quad$ Duality $\quad \begin{gathered} \pm 1 \text { is identified } \\ S^{2}=1,\end{gathered}(S T)^{3}=1$.
 $T: \tau \longrightarrow \tau+1$. Dicrete shift symmetry

generate infinite discrete group

Modular group

4D effective theory
Coupling is not constant !

- depends on a modulus τ
- is independent under modular transformation

An example

$$
\underset{\text { Automorphy factor }}{\mathcal{L}_{1}=f(\tau) \phi_{1} \phi_{2} \cdots \phi_{n}}
$$

$$
f(\tau) \vec{\gamma}(c \tau+d)^{k} f(\tau) \quad \text { Modular form with weight } k \text { weight k }
$$

$$
\phi_{i} \rightarrow(c \tau+d)^{-k_{i}} \phi_{i} \quad f(\tau)=(-1)^{k} f(\tau)
$$

When $k=\sum_{i} k_{i}, \mathcal{L}_{1}$ is modular invariant.
$44 \quad \mathbf{f}(\gamma \tau)=\mathbf{f}(\tau) \quad$ Too restrictive condition $!\Rightarrow \frac{\mathbf{f}(\gamma \tau)}{\mathbf{f}(\tau)}=(\mathbf{c} \tau+\mathbf{d})^{\mathbf{k}} ; \quad \frac{\mathbf{d} \gamma}{\mathbf{d} \tau}=(\mathbf{c} \tau+\mathbf{d})^{-2}$

